A Comprehensive Review of Bimetallic Nanoparticle–Graphene Oxide and Bimetallic Nanoparticle–Metal–Organic Framework Nanocomposites as Photo-, Electro-, and Photoelectrocatalysts for Hydrogen Evolution Reaction
Mogwasha Dapheny Makhafola (),
Sheriff Aweda Balogun and
Kwena Desmond Modibane
Additional contact information
Mogwasha Dapheny Makhafola: Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, Sovenga 0727, South Africa
Sheriff Aweda Balogun: Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, Sovenga 0727, South Africa
Kwena Desmond Modibane: Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo (Turfloop), Polokwane, Sovenga 0727, South Africa
Energies, 2024, vol. 17, issue 7, 1-46
Abstract:
This review extensively discusses current developments in bimetallic nanoparticle–GO and bimetallic nanoparticle–MOF nanocomposites as potential catalysts for HER, along with their different synthesis methodologies, structural characteristics, and catalytic mechanisms. The photoelectrocatalytic performance of these catalysts was also compared based on parameters such as Tafel slope, current density, onset potential, turnover frequency, hydrogen yield, activation energy, stability, and durability. The review shows that the commonly used metal alloys in the bimetallic nanoparticle–GO-based catalysts for HERs include Pt-based alloys (e.g., PtNi, PtCo, PtCu, PtAu, PtSn), Pd-based alloys (e.g., PdAu, PdAg, PdPt) or other combinations, such as AuNi, AuRu, etc., while the most used electrolyte sources are H 2 SO 4 and KOH. For the bimetallic nanoparticle MOF-based catalysts, Pt-based alloys (e.g., PtNi, PtCu), Pd-based alloys (e.g., PdAg, PdCu, PdCr), and Ni-based alloys (e.g., NiMo, NiTi, NiAg, NiCo) took the lead, with KOH being the most frequently used electrolyte source. Lastly, the review addresses challenges and prospects, highlighting opportunities for further optimization and technological integration of the catalysts as promising alternative photo/electrocatalysts for future hydrogen production and storage.
Keywords: hydrogen energy; graphene oxide; metal–organic frameworks; hydrogen evolution reaction; electrocatalyst (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1646/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1646/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1646-:d:1366646
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().