A Review of Heat Dissipation and Absorption Technologies for Enhancing Performance in Photovoltaic–Thermal Systems
Ischia Kurniawati and
Yonmo Sung ()
Additional contact information
Ischia Kurniawati: Graduate Program, Department of Energy & Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Gyeongnam, Republic of Korea
Yonmo Sung: Department of Smart Energy & Mechanical Engineering, Gyeongsang National University, Tongyeong-si 53064, Gyeongnam, Republic of Korea
Energies, 2024, vol. 17, issue 7, 1-30
Abstract:
With the growing demand for photovoltaic (PV) systems as a source of energy generation that produces no greenhouse gas emissions, effective strategies are needed to address the inherent inefficiencies of PV systems. These systems typically absorb only approximately 15% of solar energy and experience performance degradation due to temperature increases during operation. To address these issues, PV–thermal (PVT) technology, which combines PV with a thermal absorber to dissipate excess heat and convert it into additional thermal energy, is being rapidly developed. This review presents an overview of various PVT technologies designed to prevent overheating in operational systems and to enhance heat transfer from the solar cells to the absorber. The methods explored include innovative absorber designs that focus on increasing the heat transfer contact surface, using mini/microchannels for improved heat transfer contiguity, and substituting traditional metal materials with polymers to reduce construction costs while utilizing polymer flexibility. The review also discusses incorporating phase change materials for latent heat absorption and using nanofluids as coolant mediums, which offer higher thermal conductivity than pure water. This review highlights significant observations and challenges associated with absorber design, mini/microchannels, polymer materials, phase change materials, and nanofluids in terms of PV waste heat dissipation. It includes a summary of relevant numerical and experimental studies to facilitate comparisons of each development approach.
Keywords: photovoltaic–thermal; absorber; mini/microchannel; phase change materials; polymer materials; nanofluids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/7/1721/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/7/1721/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:7:p:1721-:d:1369731
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().