EconPapers    
Economics at your fingertips  
 

Acoustic Design Parameter Change of a Pressurized Combustor Leading to Limit Cycle Oscillations

Mehmet Kapucu (), Jim B. W. Kok and Artur K. Pozarlik
Additional contact information
Mehmet Kapucu: Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands
Jim B. W. Kok: Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands
Artur K. Pozarlik: Faculty of Engineering Technology, University of Twente, 7522 NB Enschede, The Netherlands

Energies, 2024, vol. 17, issue 8, 1-23

Abstract: When aiming to cut down on the emission of nitric oxides by gas turbine engines, it is advantageous to have them operate at low combustion temperatures. This is achieved by lean premixed combustion. Although lean premixed combustion is a proven and promising technology, it is also very sensitive to thermoacoustic instabilities. These instabilities occur due to a coupling between the unsteady heat release rate of the flame and the acoustic field inside the combustion chamber. In this paper, this coupling is investigated in detail. Two acoustic design parameters of a swirl-stabilized pressurized preheated air (300 °C)/natural gas combustor are varied, and the occurrence of thermoacoustic limit cycle oscillations is explored. The sensitivity of the acoustic field as a function of combustion chamber length (0.9 m to 1.8 m) and reflection coefficient (0.7 and 0.9) at the exit of the combustor is investigated first using a hybrid numerical and analytical approach. ANSYS CFX is used for Unsteady Reynolds Averaged Navier-Stokes (URANS) numerical simulations, and a one-dimensional acoustic network model is used for the analytical investigation. Subsequently, the effects of a change in the reflection coefficient are validated on a pressurized combustor test rig at 125 kW and 1.5 bar. With the change in reflection coefficient, the combustor switched to limit cycle oscillation as predicted, and reached a sound pressure level of 150 dB.

Keywords: combustion; instability; network; thermoacoustic; limit cycle oscillation; reflection coefficient (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/8/1885/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/8/1885/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:8:p:1885-:d:1376255

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:8:p:1885-:d:1376255