Direct Numerical Simulation Analysis of the Closure of Turbulent Scalar Flux during Flame–Wall Interaction of Premixed Flames within Turbulent Boundary Layers
Umair Ahmed,
Sanjeev Kumar Ghai and
Nilanjan Chakraborty ()
Additional contact information
Umair Ahmed: School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
Sanjeev Kumar Ghai: School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
Nilanjan Chakraborty: School of Engineering, Newcastle University, Claremont Road, Newcastle upon Tyne NE1 7RU, UK
Energies, 2024, vol. 17, issue 8, 1-21
Abstract:
The statistical behaviour and modelling of turbulent fluxes of the reaction progress variable and non-dimensional temperature in the context of Reynolds-Averaged Navier–Stokes (RANS) simulations have been analysed for flame–wall interactions within turbulent boundary layers. Three-dimensional Direct Numerical Simulation (DNS) databases of two different flame–wall interaction configurations—(i) statistically stationary oblique wall quenching (OWQ) of a V-flame in a turbulent channel flow and (ii) unsteady head-on quenching (HOQ) of a statistically planar flame propagating across a turbulent boundary layer—have been considered for this analysis. Scalar fluxes of both the temperature and reaction progress variable exhibit counter-gradient behaviour at all times during unsteady HOQ of statistically planar turbulent premixed flames considered here. In the case of statistically stationary V-flame OWQ, the scalar fluxes of both reaction progress variable and temperature exhibit counter-gradient behaviour before quenching, but gradient behaviour has been observed close to the wall once the flame begins to quench. The weakening of the effects of thermal expansion close to the wall as a result of flame quenching gives rise to a gradient type of transport for the streamwise component in the oblique quenching of the V-flame. It has been found that the relative orientation of the flame normal vector with respect to the wall normal vector needs to be accounted for in the algebraic scalar flux closure, which can be applied to different flame/flow configurations. An existing algebraic scalar flux model has been modified in this analysis for flame–wall interaction within turbulent boundary layers, and it has been demonstrated to capture the turbulent fluxes of the reaction progress variable and non-dimensional temperature reasonably accurately for both configurations considered here based on a priori DNS analysis.
Keywords: turbulent scalar flux; flame–wall interaction; head-on quenching; oblique wall quenching; Direct Numerical Simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/8/1930/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/8/1930/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:8:p:1930-:d:1377988
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().