A Time Series Forecasting Approach Based on Meta-Learning for Petroleum Production under Few-Shot Samples
Zhichao Xu and
Gaoming Yu ()
Additional contact information
Zhichao Xu: School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
Gaoming Yu: School of Petroleum Engineering, Yangtze University, Wuhan 430100, China
Energies, 2024, vol. 17, issue 8, 1-30
Abstract:
Accurate prediction of crude petroleum production in oil fields plays a crucial role in analyzing reservoir dynamics, formulating measures to increase production, and selecting ways to improve recovery factors. Current prediction methods mainly include reservoir engineering methods, numerical simulation methods, and deep learning methods, and the required prerequisite is a large amount of historical data. However, when the data used to train the model are insufficient, the prediction effect will be reduced dramatically. In this paper, a time series-related meta-learning (TsrML) method is proposed that can be applied to the prediction of petroleum time series containing small samples and can address the limitations of traditional deep learning methods for the few-shot problem, thereby supporting the development of production measures. The approach involves an architecture divided into meta-learner and base-learner, which learns initialization parameters from 89 time series datasets. It can be quickly adapted to achieve excellent and accurate predictions with small samples in the oil field. Three case studies were performed using time series from two actual oil fields. For objective evaluation, the proposed method is compared with several traditional methods. Compared to traditional deep learning methods, RMSE is decreased by 0.1766 on average, and MAPE is decreased by 4.8013 on average. The empirical results show that the proposed method outperforms the traditional deep learning methods.
Keywords: meta-learning; few-shot learning; petroleum production forecasting; time series forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/8/1947/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/8/1947/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:8:p:1947-:d:1378747
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().