Dual-Coupled-Inductor-Based High-Step-Up Boost Converter with Active-Clamping and Zero-Voltage Switching
Sheng-Hua Chen,
Chuan-Ting Chen and
Yi-Feng Lin ()
Additional contact information
Sheng-Hua Chen: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Chuan-Ting Chen: Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
Yi-Feng Lin: Department of Electrical Engineering, National Ilan University, Yilan City 26047, Taiwan
Energies, 2024, vol. 17, issue 9, 1-18
Abstract:
Many applications, such as photovoltaic systems, uninterruptible power supplies, and automobile headlamps, need a high step-up DC–DC converter without isolation. The conventional boost converter has the advantages of simple topology and easy control. However, it has some shortcomings, such as insufficient step-up voltage ratio and poor efficiency when operating at large duty-cycle conditions. One of the popular topologies used to overcome these problems is the coupled-inductor boost converter. It utilizes the turn ratio of the coupled inductor to realize a higher step-up voltage ratio. The drawback is that the leakage inductance of the coupled inductor causes a huge voltage spike when the power switches are turned off. Moreover, because coupled inductors are characterized by their large volume and high profile, a conventional coupled-inductor boost converter is unsuited for photovoltaic systems, such as the solar microinverter. This study proposes a novel high-step-up boost converter to solve these problems. This proposed converter uses dual coupled inductors instead of the conventional coupled-inductor boost converter. The secondary side of the coupled inductor is connected in series to increase the step-up voltage ratio. The proposed converter utilizes active clamping to achieve zero-voltage switching (ZVS) for suppressing voltage spike and improving conversion efficiency. In addition, low-profile designs can be fulfilled easily for solar microinverters. The proposed converter and its control method are introduced. The operation principle, circuit characteristics, and circuit analysis are presented. A prototype converter with 300 W output power 25–40 VDC input voltage and 200 VDC output voltage was tested. All functions, including high step-up voltage ratio, ZVS, and active clamping, were achieved, and the highest efficiency was around at 94.7%.
Keywords: coupled inductor; high step-up voltage gain; zero-voltage switching (ZVS) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2018/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2018/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2018-:d:1382331
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().