Multilevel Aircraft-Inverter Design Based on Wavelet PWM for More Electric Aircraft
Nurbanu Catalbas,
Ahmet Gungor Pakfiliz and
Gokhan Soysal ()
Additional contact information
Nurbanu Catalbas: Faculty of Engineering, Department of Electrical and Electronics Engineering, Ankara University, Ankara 06830, Turkey
Ahmet Gungor Pakfiliz: Faculty of Engineering, Department of Electrical and Electronics Engineering, OSTIM Technical University, Ankara 06374, Turkey
Gokhan Soysal: Faculty of Engineering, Department of Electrical and Electronics Engineering, Ankara University, Ankara 06830, Turkey
Energies, 2024, vol. 17, issue 9, 1-23
Abstract:
This paper proposes a comprehensive power system designed for the use of a more electric aircraft power distribution system. Instead of traditional Nicad battery solutions as the energy source of the aircraft power system, lithium battery structures, which are a recent and promising solution in the field of aviation power systems, are modeled and analyzed. In this study, a WPWM-based, single-phase, multi-level pure sine wave static aircraft-inverter system is designed and integrated to improve the performance of conventional aircraft power systems. In the designed power system, a boost converter structure is proposed that boosts 28 VDC-to-270 VDC voltage coming from the lithium–ion battery pack and can reach a steady state in 0.032 s. The performance of the modeled WPWM-based aircraft-inverter system, compared to SPWM Bipolar and Unipolar switching techniques commonly used in single-phase inverter designs, reveals a THD reduction of approximately 27% with WPWM, resulting in a THD value below 2% for both load current and load voltage. As a result of the study, a power system that will enable the aircraft avionics, ventilation, and navigation systems to perform better than conventional power systems and comply with aircraft electric-power characteristic standards has been designed and detailed.
Keywords: more electric aircraft; aircraft inverter; sustainable aviation; wavelet PWM inverter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2054/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2054/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2054-:d:1383335
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().