EconPapers    
Economics at your fingertips  
 

Elucidating Interfacial Hole Extraction and Recombination Kinetics in Perovskite Thin Films

Sunkyu Kim, Wonjong Lee, Zobia Irshad, Siwon Yun, Hyeji Han, Muhammad Adnan, Hyo Sik Chang and Jongchul Lim ()
Additional contact information
Sunkyu Kim: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Wonjong Lee: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Zobia Irshad: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Siwon Yun: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Hyeji Han: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Muhammad Adnan: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Hyo Sik Chang: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
Jongchul Lim: Graduate School of Energy Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea

Energies, 2024, vol. 17, issue 9, 1-14

Abstract: Hybrid organic–inorganic perovskite solar cells (PSCs) are receiving huge attention owing to their marvelous advantages, such as low cost, high efficiency, and superior optoelectronics characteristics. Despite their promising potential, charge-carrier dynamics at the interfaces are still ambiguous, causing carrier recombination and hindering carrier transport, thus lowering the open-circuit voltages ( V oc ) of PSCs. To unveil this ambiguous phenomenon, we intensively performed various optoelectronic measurements to investigate the impact of interfacial charge-carrier dynamics of PSCs under various light intensities. This is because the charge density can exhibit different mobility and charge transport properties depending on the characteristics of the charge transport layers. We explored the influence of the hole transport layer (HTL) by investigating charge transport properties using photoluminescence (PL) and time-resolved (TRPL) to unveil interfacial recombination phenomena and optoelectronic characteristics. We specifically investigated the impact of various thicknesses of HTLs, such as 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD), and poly(triaryl)amine (PTAA), on FA 0.83 MA 0.17 Pb(Br 0.05 I 0.95 ) 3 perovskite films. The HTLs are coated on perovskite film by altering the HTL’s concentration and using F4-TCNQ and 4-tert-butylpyridine ( t BP) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSi) as dopants both for spiro-OMeTAD and PTAA. These HTLs diversified the charge concentration gradients in the absorption layer, thus leading to different recombination rates based on the employed laser intensities. At the same time, the generated charge carriers are rapidly transferred to the interface of the HTL/absorption layer and accumulate holes at the interface because of inefficient capacitance and mobility differences caused by differently doped HTL thicknesses. Notably, the charge concentration gradient is low at lower light intensities and did not accumulate holes at the HTL/absorption layer interface, even though they have high charge mobility. Therefore, this study highlights the importance of interfacial charge recombination and charge transport phenomena to achieve highly efficient and stable PSCs.

Keywords: optoelectronic analysis; interfacial charge extraction; perovskite; hole transport layer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2062/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2062/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2062-:d:1383555

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2062-:d:1383555