Experimental Study on Two-Phase Countercurrent Flow Limitation in Horizontal Circular Pipes
Xixi Zhu,
Chende Xu,
Mingzhou Gu and
Naihua Wang ()
Additional contact information
Xixi Zhu: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Chende Xu: State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment, China Nuclear Power Engineering Co., Ltd., Shenzhen 518000, China
Mingzhou Gu: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Naihua Wang: Institute of Thermal Science and Technology, Shandong University, Jinan 250061, China
Energies, 2024, vol. 17, issue 9, 1-18
Abstract:
The two-phase countercurrent flow limitation (CCFL) in horizontal channels is important in relation to nuclear reactor safety. In this study, we aim to investigate the CCFL characteristics and the flow behaviors in horizontal circular pipes with small diameters. The effects of pipe diameter and the water head in the upper plenum on CCFL characteristics are experimentally studied. An image-processing technique and statistical treatments are implemented to analyze the horizontal countercurrent flow. The results show that the CCFL characteristics for the horizontal circular pipes with small diameters can be well correlated using the dimensionless parameters, which are based on adding fluid viscosity to the Wallis parameters. The CCFL characteristics are significantly affected by the pipe diameter and are slightly affected by the water head above the horizontal pipe. The gas–liquid interface fluctuates with certain periods, and flow pattern transitions happen in the horizontal air–water countercurrent flow. As the air flow rate increases, the occurrence location of the liquid slug appears to shift towards the water entrance. In addition, the further away from the water entrance, the lower the average of liquid holdup.
Keywords: countercurrent flow limitation; CCFL characteristics; horizontal circular pipe; image-processing; statistical treatments (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2081/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2081/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2081-:d:1384014
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().