Optimal Scheduling of Off-Site Industrial Production in the Context of Distributed Photovoltaics
Sizhe Xie (),
Yao Li and
Peng Wang
Additional contact information
Sizhe Xie: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Yao Li: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Peng Wang: Department of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
Energies, 2024, vol. 17, issue 9, 1-18
Abstract:
A reasonable allocation of production schedules and savings in overall electricity costs are crucial for large manufacturing conglomerates. In this study, we develop an optimization model of off-site industrial production scheduling to address the problems of high electricity costs due to the irrational allocation of production schedules on the demand side of China’s power supply, and the difficulty in promoting industrial and commercial distributed photovoltaic (PV) projects in China. The model makes full use of the conditions of different PV resources and variations in electricity prices in different places to optimize the scheduling of industrial production in various locations. The model is embedded with two sub-models, i.e., an electricity price prediction model and a distributed photovoltaic power cost model to complete the model parameters, in which the electricity price prediction model utilizes a Long Short-Term Memory (LSTM) neural network. Then, the particle swarm optimization algorithm is used to solve the optimization model. Finally, the production data of two off-site pharmaceutical factories belonging to the same large group of enterprises are substituted into the model for example analysis, and it is concluded that the optimization model can significantly reduce the electricity consumption costs of the enterprises by about 7.9%. This verifies the effectiveness of the optimization model established in this paper in reducing the cost of electricity consumption on the demand side.
Keywords: optimized scheduling; distributed photovoltaic; LSTM neural network; particle swarm optimization algorithm; master–slave game; electricity market (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2156/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2156/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2156-:d:1387157
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().