DEM-CFD Simulation Analysis of Heat Transfer Characteristics for Hydrogen Flow in Randomly Packed Beds
Quanchen Zhang,
Yongfang Xia (),
Zude Cheng and
Xin Quan
Additional contact information
Quanchen Zhang: School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
Yongfang Xia: School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
Zude Cheng: School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
Xin Quan: School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230009, China
Energies, 2024, vol. 17, issue 9, 1-24
Abstract:
In this study, three randomly packed beds with varying tube-to-particle diameter ratios (D/d) are constructed using the discrete element method (DEM) and simulated via CFD under low pore Reynolds numbers ( Re p < 100). An innovation of this research lies in the application of hydrogen in randomly packed beds, coupled with the consideration of its temperature-dependent thermal properties. The axial analysis of the heat transfer characteristics shows that PB−5 and PB−6 achieve thermal equilibrium 44% and 58% faster than PB−4, respectively, demonstrating enhanced heat transfer efficiency. However, at higher flow rates (0.8 m/s), the large-sized fluid channels in PB−6 severely impact the heat transfer efficiency, slightly reducing it compared to PB−5. Additionally, this study introduces a localized segmentation method for calculating the axial local Nusselt number, showing that the axial local Nusselt number ( Nu ) not only exhibits an inverse relationship with the axial porosity distribution, but also matches its amplitude fluctuations. The wall effect significantly impacts the flow and temperature distribution in the packed bed, causing notable velocity and temperature oscillations in the near-wall region. In the near-wall region, the average temperature is lower than in the core region, and the axial temperature profile exhibits more intense oscillations. These findings may provide insights into the use of hydrogen in randomly packed beds, which are vital for enhancing industrial applications such as hydrogen storage and utilization.
Keywords: DEM; CFD; packed bed; hydrogen flow; Nusselt number; heat transfer coefficient (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2226/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2226/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2226-:d:1388845
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().