EconPapers    
Economics at your fingertips  
 

Optimal Scheduling Strategy for Distribution Network with Mobile Energy Storage System and Offline Control PVs to Minimize the Solar Energy Curtailment

San Kim and Jinyeong Lee ()
Additional contact information
San Kim: School of Electrical Engineering, Anam Campus, Korea University, 145 Anam-ro, Seoul 02841, Republic of Korea
Jinyeong Lee: Electricity Policy Research Center, Korea Electrotechnology Research Institute (KERI), Uiwang 16029, Republic of Korea

Energies, 2024, vol. 17, issue 9, 1-17

Abstract: As offline control photovoltaic (PV) plants are not equipped with online communication and remote control systems, they cannot adjust their power in real-time. Therefore, in a distribution network saturated with offline control PVs, the distribution system operator (DSO) should schedule the distributed energy resources (DERs) considering the uncertainty of renewable energy to prevent curtailment due to overvoltage. This paper presents a day-ahead network operation strategy using a mobile energy storage system (MESS) and offline control PVs to minimize power curtailment. The MESS model efficiently considers the transportation time and power loss of the MESS, and models various operating modes, such as the charging, discharging, idle, and moving modes. The optimization problem is formulated based on mixed-integer linear programming (MILP) considering the spatial and temporal operation constraints of MESSs and is performed using chanced constrained optimal power flow (CC-OPF). The upper limits for offline control PVs are set based on the probabilistic approach, thus mitigating overvoltage due to forecasting errors. The proposed operation strategy was tested in the IEEE 33-node distribution system coupled with a 15-node transportation system. The test results show the effectiveness of the proposed method for minimizing curtailment in offline control PVs.

Keywords: offline control photovoltaic; mobile energy storage system; renewable curtailment mitigation; distribution system operator; chanced constrained optimal power flow (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/17/9/2234/pdf (application/pdf)
https://www.mdpi.com/1996-1073/17/9/2234/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:17:y:2024:i:9:p:2234-:d:1389225

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:17:y:2024:i:9:p:2234-:d:1389225