Optimizing Hybrid Electric Vehicle Performance: A Detailed Overview of Energy Management Strategies
Álvaro Gómez-Barroso (),
Iban Vicente Makazaga and
Ekaitz Zulueta
Additional contact information
Álvaro Gómez-Barroso: Tecnalia Research & Innovation, 48160 Derio, Spain
Iban Vicente Makazaga: Tecnalia Research & Innovation, 48160 Derio, Spain
Ekaitz Zulueta: System Engineering and Automation Control Department, Faculty of Engineering of Vitoria-Gasteiz, University of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
Energies, 2024, vol. 18, issue 1, 1-32
Abstract:
Rising greenhouse gas emissions stemming from road transport have intensified the need for efficient and environmentally friendly propulsion technologies. Hybrid and fuel cell electric vehicles have emerged as a viable solution, integrating internal combustion engines and fuel cells with electric motors to optimize fuel efficiency and reduce emissions. This article reviews and analyzes energy management strategies for the principal powertrain topologies of hybrid electric vehicles, focusing on achieving solution optimality in real-time applications. A thorough and comprehensive overview of rule-based, optimization-based, and learning-based energy management strategies is presented, highlighting their main attributes and providing a comparative analysis in terms of fuel economy improvements, real-time implementation feasibility, and computational complexity, while simultaneously identifying and uncovering areas requiring further research in the field. We found that while rule-based methods offer simplicity and real-time capability, their adaptability remains limited. Optimization-based and learning-based approaches, although often achieving near-optimal solutions, face challenges due to their high computational demands and integration complexities. Our analysis also revealed the importance of leveraging vehicle connectivity and intelligent transportation systems for future energy management developments, which will contribute to broader sustainability goals in the automotive sector.
Keywords: energy management strategies; hybrid electric vehicles; fuel cell hybrid electric vehicles; optimization; real-time control; fuel economy; greenhouse gas emissions; efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/1/10/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/1/10/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2024:i:1:p:10-:d:1551353
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().