A Comprehensive Review of Flamelet Methods: Future Directions and Emerging Challenges
Mohammed Niyasdeen Nejaamtheen and
Jeong-Yeol Choi ()
Additional contact information
Mohammed Niyasdeen Nejaamtheen: Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea
Jeong-Yeol Choi: Department of Aerospace Engineering, Pusan National University, Busan 46241, Republic of Korea
Energies, 2024, vol. 18, issue 1, 1-49
Abstract:
Understanding and accurately modeling combustion processes in engines across a wide range of operating conditions is critical for advancing both subsonic and supersonic propulsion technologies. These engines, characterized by highly complex flow fields, varying degrees of compressibility, and intricate chemical reaction mechanisms, present unique challenges for computational combustion models. Among the various approaches, flamelet models have gained prominence due to their efficiency and intuitive nature. However, traditional flamelet models, which often assume fixed boundary conditions, face significant difficulties. This review article provides a comprehensive overview of the current state of incompressible flamelet modeling, with a focus on recent advancements and their implications for turbulent combustion simulations. The discussion extends to advanced topics such as the modeling of partially premixed combustion, the definition of reaction progress variables, efficient temperature computation, and the handling of mixture fraction variance. Despite the inherent challenges and limitations of flamelet modeling, particularly in 1D applications, the approach remains an attractive option due to its computational efficiency and applicability across a wide range of combustion scenarios. The review also highlights ongoing debates within the research community regarding the validity of the flamelet approach, particularly in high-speed flows, and suggests that while alternative methods may offer more detailed modeling, they often come with prohibitive computational costs. By synthesizing historical context, recent developments, and future directions, this article serves as a valuable resource for both novice and experienced combustion modelers.
Keywords: turbulent combustion; incompressible flamelet; mixture fraction; scalar dissipation rate; reaction progress variable (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/1/45/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/1/45/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2024:i:1:p:45-:d:1554062
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().