EconPapers    
Economics at your fingertips  
 

Optimizing Autonomous Multi-UAV Path Planning for Inspection Missions: A Comparative Study of Genetic and Stochastic Hill Climbing Algorithms

Faten Aljalaud () and Yousef Alohali
Additional contact information
Faten Aljalaud: Computer Science Department, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11564, Saudi Arabia
Yousef Alohali: Computer Science Department, College of Computer and Information Sciences, King Saud University, Riyadh 11451, Saudi Arabia

Energies, 2024, vol. 18, issue 1, 1-22

Abstract: Efficient path planning is vital for multi-UAV inspection missions, yet the comparative effectiveness of different optimization strategies has not received much attention. This paper introduces the first application of the Genetic Algorithm (GA) and Hill Climbing (HC) to multi-UAV inspection of indoor pipelines, providing a unique comparative analysis. GA exemplifies the global search strategy, while HC illustrates an enhanced stochastic local search. This comparison is impactful as it highlights the trade-offs between exploration and exploitation—two key challenges in multi-UAV path optimization. It also addresses practical concerns such as workload balancing and energy efficiency, which are crucial for the successful implementation of UAV missions. To tackle common challenges in multi-UAV operations, we have developed a novel repair mechanism. This mechanism utilizes problem-specific repair heuristics to ensure feasible and valid solutions by resolving redundant or missed inspection points. Additionally, we have introduced a penalty-based approach in HC to balance UAV workloads. Using the Crazyswarm simulation platform, we evaluated GA and HC across key performance metrics: energy consumption, travel distance, running time, and maximum tour length. The results demonstrate that GA achieves a 22% reduction in travel distance and a 23% reduction in energy consumption compared to HC, which often converges to suboptimal solutions. Additionally, GA outperforms HC, Greedy, and Random strategies, delivering at least a 13% improvement in workload balancing and other metrics. These findings establish a novel and impactful benchmark for comparing global and local optimization strategies in multi-UAV tasks, offering researchers and practitioners critical insights for selecting efficient and sustainable approaches to UAV operations in complex inspection environments.

Keywords: autonomous; multi-UAV; path planning; inspection; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/1/50/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/1/50/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2024:i:1:p:50-:d:1554213

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:18:y:2024:i:1:p:50-:d:1554213