Model-Based Optimization of a Sliding Vane Rotary Pump for Micro-Organic Rankine Cycle
Fabio Fatigati (),
Giammarco Di Giovine and
Roberto Cipollone
Additional contact information
Fabio Fatigati: Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy
Giammarco Di Giovine: Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy
Roberto Cipollone: Department of Industrial and Information Engineering and Economics, University of L’Aquila, Piazzale Ernesto Pontieri, Monteluco di Roio, 67100 L’Aquila, Italy
Energies, 2024, vol. 18, issue 1, 1-21
Abstract:
The residential sector is one of the main sectors responsible for the atmospheric emission of CO 2 . Hence, a significant effort is required to develop technological solutions to enable decarbonization. The integration of Organic Rankine Cycle (ORC)-based units with renewable sources at a micro-scale of cogeneration units is commonly believed to be one of the most important technological alternatives. Indeed, an ORC-based unit allows the exploitation of low-temperature heat sources in the production of electricity. The low power scale of this application (1–5 kW) and the severe operating conditions call for the reliable and proper design of components. Particularly critical is the pump, as the experimental analyses available in the literature show its efficiency rarely exceeds values of 0.3. The most suitable technology is volumetric, and among those available, the sliding vane types are interesting candidates. However, low efficiency leads to a significant erosion of the power produced by the expander, limiting the achievement of high-efficiency values. What is more, in the literature, there is a lack of development of optimization strategies to improve the performance of this machine. To fill this knowledge gap, in this present paper an optimized sliding vane rotary pump was designed. Thanks to a comprehensive experimentally validated model, the pump performance was assessed for a wide range of operating conditions. Results confirmed that a disk-shaped configuration also ensures the best efficiency is achieved for small-scale pumps. Moreover, the model allowed for a detailed analysis of efficiency, evaluating the volumetric, fluid dynamic and mechanical behaviors. Results demonstrated that the weakest point was the mechanical efficiency, which was between 0.45 and 0.55. The best configuration was that involving four blades, the adoption of graphite and a clearance gap between the rotor face and casing of 10 μm. These design solutions improved efficiency by up to 25%, with a maximum value equal to 0.50, which is close to double with respect to the usual values. A final remark concerns the operating robustness of the machine, as the efficiency demonstrated weak variations even when wide operating conditions were considered.
Keywords: sliding vane rotary pump design; Organic Rankine Cycle (ORC)-based power unit; mechanical design; model-based design optimization; micro-cogenerative systems (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2024
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/1/97/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/1/97/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2024:i:1:p:97-:d:1556225
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().