Enhanced Performance of a Thermoelectric Module with Heat Pipes for Refrigeration Applications
Majed A. Alrefae ()
Additional contact information
Majed A. Alrefae: Mechanical Engineering Department, Yanbu Industrial College, Yanbu Industrial City 41912, Saudi Arabia
Energies, 2025, vol. 18, issue 10, 1-17
Abstract:
Thermoelectric module (TEM)-based coolers are gaining traction as compact, portable refrigeration solutions for storing medicine, beverages, and food. However, their adoption has been limited by relatively low cooling power and efficiency. This study demonstrates the importance of heat transfer in enhancing the coefficient of performance (COP) of TEMs through optimizing their boundary conditions. Among the three boundary conditions evaluated, the most effective involved integrating heat pipes (HPs) with a cooling fan on both sides of the TEM. This configuration significantly improved thermal management, enabling the system to achieve a COP of 0.53, with a cooling rate of 26.26 W and a cold-side temperature of 278.5 K. The enhanced heat extraction from the hot side, reaching 61.94 W, reduced the hot-side temperature to 305.6 K and decreased the overall thermal resistance, confirming the critical role of active heat dissipation. Moreover, placing a cooling fan on the HPs is crucial for facilitating efficient heat transfer from the hot side with a lower thermal resistance, as confirmed via thermal resistance analysis. Furthermore, a prototype refrigerator based on the TEM with HPs was built and tested indoors and outdoors with a COP of 0.45, a cooling rate of 21.97 W, and a cold-side temperature of 271.0 K. This study shows that the COP of TEMs can be increased by applying HPs to reduce the total thermal resistance of the TEM sides. Further optimization of TEM-based refrigerators holds promise for improving their performance in sustainable, small-scale cooling applications.
Keywords: thermoelectric; heat transfer; coefficient of performance; refrigeration; heat pipe (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2426/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2426/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2426-:d:1651811
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().