EconPapers    
Economics at your fingertips  
 

Multi-Physics Coupling Dynamics Simulation of Thermally Induced Vibration of Magnetically Suspended Rotor in Small and Micro Nuclear Reactors

Yihao Xu, Zeguang Li () and Dianchuan Xing
Additional contact information
Yihao Xu: Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Zeguang Li: Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Dianchuan Xing: Nuclear Power Institute of China, CNNC, Chengdu 610213, China

Energies, 2025, vol. 18, issue 10, 1-12

Abstract: The power conversion system of a small micro-reactor has strict requirements on the compactness of the rotating mechanical support. Although the active magnetic bearing is an ideal choice, the thermally induced vibration caused by it may destroy the stability of the system. As such, this study proposes a multi-physics coupling simulation framework, which integrates electromagnetic, thermal, and mechanical multi-physics coupling mechanisms and quantifies the stability of the system under thermal-induced vibration in the frequency domain. Firstly, the equivalent magnetic circuit and electromagnetic finite element modeling and calculation of the compressor rotor are carried out. In the case of the maximum AC current of 10 A, the equivalent stiffness of the magnetic pole is 4.21 × 10 8 N/m and 2.1 × 10 8 N/m, and the eddy current loss of the rotor is 4.17496 W. Based on the eddy current loss, a magneto-thermal coupling model is established to reveal the temperature gradient distribution and the thermal sensitivity coefficient of the journal is 0.006. Subsequently, the thermal stress and equivalent stiffness are coupled to the rotor dynamics equation, and the maximum amplitude of the rotor is obtained at a value of 0.001 mm. Finally, the critical stability threshold of the system is determined by a Nyquist diagram, and the results show that the system is stable as a whole. In this paper, the quantitative analysis of the cross-scale coupling mechanism of electromagnetic, thermal, and mechanical multi-physical fields is realized, which provides a systematic analysis method for the thermally induced vibration of magnetically suspended rotors and has important engineering significance for high power density rotating mechanical systems in small micro-reactors.

Keywords: small micro-reactor; active magnetic bearing; thermally induced vibration; multi-physics coupling simulation; stability analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2433/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2433/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2433-:d:1652396

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-10
Handle: RePEc:gam:jeners:v:18:y:2025:i:10:p:2433-:d:1652396