Distribution of Remaining Oil and Enhanced Oil Recovery Strategy for Carboniferous Buried-Hill Reservoirs in Junggar Basin
Qijun Lv,
Zhaowen Shi (),
Linsong Cheng and
Chunjing Zan
Additional contact information
Qijun Lv: College of Geosciences, China University of Petroleum, Beijing, Beijing 102249, China
Zhaowen Shi: Chengdu Branch of Daqing Oilfield Exploration and Development Research Institute, Chengdu 610051, China
Linsong Cheng: College of Geosciences, China University of Petroleum, Beijing, Beijing 102249, China
Chunjing Zan: College of Geosciences, China University of Petroleum, Beijing, Beijing 102249, China
Energies, 2025, vol. 18, issue 10, 1-21
Abstract:
The Carboniferous reservoirs in the northwestern margin of the Junggar Basin exhibit complex lithological assemblages, primarily composed of siltstone, sandy conglomerate, tuff, and igneous rocks. These reservoirs are rich in oil and gas resources but have entered the middle to late stages of development. The reservoir spaces in the Carboniferous system are mainly composed of pores and fractures, resulting in a complex storage system. To provide effective strategies for stabilizing and enhancing production during the middle to late development stages, it is essential to establish a dual-porosity and dual-permeability model based on a clear understanding of lithological distribution patterns. This will facilitate the identification of favorable zones and the proposal of effective development strategies through numerical simulation. The present study systematically identified the lithology of the study area through microscopic lithological identification combined with logging data, conducted reservoir matrix property research under facies constraints, and established a three-dimensional geological model of lithology and physical properties. To more reasonably study the reservoir development process and establish an optimal development plan, a machine learning model for fracture density was trained using imaging logging interpretation results and conventional logging curve data. The model was then utilized to calculate single-well fracture density. Finally, a fracture model of the study area was established based on the collaborative constraints of fracture density and three-dimensional seismic attributes. Using the results of the established dual-porosity and dual-permeability model and production data, reservoir production evaluation and residual oil distribution research were conducted. The results indicate that the southwestern part of the study area features thick sandy conglomerate reservoirs with good physical properties, continuous lateral distribution, and high residual oil content, making it a dominant area favorable for horizontal well development and production. Additionally, reservoir numerical simulation was employed to study enhanced production development strategies. It is recommended to adopt gas–water alternating injection to improve production, with the optimal gas–water injection ratio of 4:1 yielding the maximum reservoir recovery factor. This study provides theoretical and technical support for the development of complex lithologic buried-hill reservoirs in the Carboniferous system of the western margin of the Junggar Basin.
Keywords: Kebai fault zone; oil recovery; geological modeling; residual oil; alternating between air and wat (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2474/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2474/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2474-:d:1653768
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().