Exploring Energy Poverty: Toward a Comprehensive Predictive Framework
Takako Mochida (),
Andrew Chapman () and
Benjamin Craig McLellan
Additional contact information
Takako Mochida: Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Andrew Chapman: Graduate School of Economics, Kyushu University, Fukuoka 819-0395, Japan
Benjamin Craig McLellan: Graduate School of Energy Science, Kyoto University, Kyoto 606-8501, Japan
Energies, 2025, vol. 18, issue 10, 1-23
Abstract:
Energy poverty focuses on energy affordability in developed nations but is most often used in the developing world in the context of a lack of access to electricity, clean cooking fuels, or technologies. About 1.2 billion people still lack access to electricity and nearly 40 per cent of the world’s population lacks access to clean cooking fuels. In addition, climate change mitigation strategies must be applied to a complex and diverse socio-technical landscape that varies across and within countries. Energy poverty is among the most pressing issues to be addressed within these strategies; however, due to the complexity of its causes, there is no commonly agreed upon evaluation approach or holistic set of indicators for its quantitative evaluation. In this study, a comprehensive literature review is undertaken on energy poverty measurement methods and definitions, and factors that cause energy poverty. Through this, exogenous and endogenous factors that are often overlooked in the assessment and prediction of energy poverty are identified. The need for an energy poverty prediction framework is identified, incorporating missing perspectives and elements needed to implement future energy poverty projections to enable proactive policy development. Missing perspectives included an increase in energy demand associated with the development of innovative technologies including artificial intelligence and automation, increasing fuel prices, and exogenous factors such as rising temperatures and increased acute disasters and endemic structural failures associated with climate change leading to employment impacts, all of which may be critical to the accurate prediction of energy poverty.
Keywords: energy poverty; fuel poverty; energy affordability; energy access; climate change; prediction; multicriteria index; framework; energy transition (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2516/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2516/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2516-:d:1654874
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().