Cable External Breakage Source Localization Method Based on Improved Generalized Cross-Correlation Phase Transform with Multi-Sensor Fusion
Xuwen Wang () and
Jiang Li
Additional contact information
Xuwen Wang: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Jiang Li: College of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
Energies, 2025, vol. 18, issue 10, 1-20
Abstract:
In response to the need for cable outer sound source localization, this paper proposes a collaborative localization method based on an improved generalized cross-correlation phase transform (GCC-PHAT) and multi-sensor fusion. By constructing a secondary cross-shaped sensor array model, employing a phase transform weighting function to suppress environmental noise, and incorporating an adaptive environmental compensation algorithm to eliminate multipath effects, a set of spatial localization equations is established. Innovatively, a dynamic weighting factor linked to the startup threshold is introduced; the Levenberg–Marquardt optimization algorithm is then used to iteratively solve the nonlinear equations to achieve preliminary localization in a single-pile coordinate system. Finally, a dynamic weighted fusion model is constructed through DBSCAN spatial clustering to determine the final sound source position. Experimental results demonstrate that this method reduces the mean square error of time delay estimation by 94.7% in a 90 dB industrial noise environment, decreases the localization error by 65.4% in multi-obstacle scenarios, and ultimately maintains localization accuracy within 3 m over a range of 100 m. This performance is significantly superior to that of traditional TDOA and SRP-PHAT methods, offering a high-precision localization solution for underground cable protection.
Keywords: cable outbreak; cable marking stakes; sound source localization; GCC-PHAT algorithm; dynamic weighting; multi-sensor fusion (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2628/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2628/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2628-:d:1659470
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().