Predicting Thermal Performance of Aquifer Thermal Energy Storage Systems in Depleted Clastic Hydrocarbon Reservoirs via Machine Learning: Case Study from Hungary
Hawkar Ali Abdulhaq (),
János Geiger,
István Vass,
Tivadar M. Tóth,
Tamás Medgyes,
Gábor Bozsó,
Balázs Kóbor,
Éva Kun and
János Szanyi
Additional contact information
Hawkar Ali Abdulhaq: Department of Atmospheric and Geospatial Data Sciences, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
János Geiger: Department of Geology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
István Vass: MOL Hungary, MOL Plc, H-6701 Algyő, SZEAK épület 2.em 207.sz., 6701 Algyő, Hungary
Tivadar M. Tóth: Department of Geology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
Tamás Medgyes: SZETAV District Heating Company of Szeged, Vág u. 4, 6724 Szeged, Hungary
Gábor Bozsó: Department of Geology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
Balázs Kóbor: SZETAV District Heating Company of Szeged, Vág u. 4, 6724 Szeged, Hungary
Éva Kun: Szabályozott Tevékenységek Felügyeleti Hatósága, Alkotás Utca 50, 1123 Budapest, Hungary
János Szanyi: Department of Geology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
Energies, 2025, vol. 18, issue 10, 1-22
Abstract:
This study presents an innovative approach for repurposing depleted clastic hydrocarbon reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, integrating numerical heat transport modeling and machine learning optimization. A detailed hydrogeological model of the Békési Formation was built using historical well logs, core analyses, and production data. Heat transport simulations using MODFLOW/MT3DMS revealed optimal dual-well spacing and injection strategies, achieving peak injection temperatures around 94.9 °C and thermal recovery efficiencies ranging from 81.05% initially to 88.82% after multiple operational cycles, reflecting an efficiency improvement of approximately 8.5%. A Random Forest model trained on simulation outputs predicted thermal recovery performance with high accuracy (R 2 ≈ 0.87) for candidate wells beyond the original modeling domain, demonstrating computational efficiency gains exceeding 90% compared to conventional simulations. The proposed data-driven methodology significantly accelerates optimal site selection and operational planning, offering substantial economic and environmental benefits and providing a scalable template for similar geothermal energy storage initiatives in other clastic sedimentary basins.
Keywords: machine learning; aquifer thermal energy storage; heat transport modeling; geothermal energy; depleted hydrocarbon reservoirs (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2642/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2642/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2642-:d:1660105
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().