Model of a Switched Reluctance Generator Considering Iron Losses, Mutual Coupling and Remanent Magnetism
Šime Grbin,
Dinko Vukadinović () and
Mateo Bašić
Additional contact information
Šime Grbin: HEP-ODS Elektra Zadar, 23000 Zadar, Croatia
Dinko Vukadinović: Department of Power Engineering, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia
Mateo Bašić: Department of Power Engineering, Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, 21000 Split, Croatia
Energies, 2025, vol. 18, issue 10, 1-27
Abstract:
In this paper, an advanced model of a switched reluctance generator (SRG) with mutual coupling, iron losses, and remanent magnetism is presented. The proposed equivalent circuit for each SRG phase is represented by the winding resistance, phase inductance and electromotive forces (EMFs) induced by mutual flux-linkage and remanent magnetism. In the advanced SRG model, the phase inductance and equivalent iron-loss resistance need not be known, as the components of the phase current flowing through them are determined directly from appropriate look-up tables, making the advanced SRG model simpler. Both the magnitude of the mutual flux-linkage and its time derivative are considered in the advanced model. The proposed model only requires knowledge of data that can be obtained using the DC excitation method and does not require knowledge of the SRG material properties. For the first time, the remanent magnetic flux of the SRG is modeled and the induced EMS caused by it is included in the advanced SRG model. Stray losses within the SRG are considered negligible. Connection to an asymmetric bridge converter is assumed. Magnetization angles of individual SRG phases are provided by the terminal voltage controller. The results obtained with the advanced SRG model are compared with experiments carried out in the steady-state of the 8/6 SRG with a rated power of 1.1 kW SRG over a wide range of load, terminal voltage, turn-on angle, and rotor speed in single-pulse mode suitable for high-speed applications.
Keywords: switched reluctance generator; mutual inductances; iron losses; remanence; asymmetric bridge converter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/10/2656/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/10/2656/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:10:p:2656-:d:1660874
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().