Energy Storage Systems: Scope, Technologies, Characteristics, Progress, Challenges, and Future Suggestions—Renewable Energy Community Perspectives
Shoaib Ahmed () and
Antonio D’Angola ()
Additional contact information
Shoaib Ahmed: Department of Engineering, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, PZ, Italy
Antonio D’Angola: Department of Engineering, University of Basilicata, Via dell’Ateneo Lucano, 10, 85100 Potenza, PZ, Italy
Energies, 2025, vol. 18, issue 11, 1-32
Abstract:
A paradigm transition from centralized to decentralized energy systems has occurred, which has increased the deployment of renewable energy sources (RESs) in renewable energy communities (RECs), promoting energy independence, strengthening local resilience, increasing self-sufficiency, and moving toward CO 2 emission reduction. However, the erratic and unpredictable generation of RESs like wind, solar, and other sources make these systems necessary, and a lot of interest in energy storage systems is increasing because they have rapidly become the cornerstone of modern energy infrastructure, and there is a trend towards using more RESs and decentralization, resulting in increased self-sufficiency. Additionally, ESS is increasingly being installed at or close to the point of energy generation and consumption, like within residences, buildings, or community microgrids, instead of at centralized utility-scale facilities, referred to be decentralized. By storing and using energy in the same location, this localized deployment reduces transmission losses, facilitates quicker response to changes in demand, and promotes local autonomy in energy management. Since the production of renewable energy is naturally spread, decentralizing storage is crucial to optimizing efficiency and dependability. This article also focuses on energy storage systems, highlighting the role and scope of ESSs along with the services of ESSs in different parts of the power system network, particularly in renewable energy communities (RECs). The classification of various ESS technologies and their key features, limitations, and applications is discussed following the current technological and significant information trends and discussing the ESS types for the RECs with different options as per the capacity, like small, medium, and large scale. It covers the overall scenario and progress, like overall European ESS installed capacity, and the work relevant to ESSs in RECs with different aspects, following the literature review. Additionally, it draws attention to the gaps and significant challenges related to ESS technologies and their deployment. Key future suggestions have also been given as per the current trends of technological information and significant information that may affect those trends globally in the future and would be helpful in the growth of ESSs integration in RECs. The authors also suggest the role of the government, stakeholders, and supportive policies that can aid in the implementation of ESS technologies in RECs.
Keywords: decentralized energy sources; renewable energy community; energy storage system; classification; progress (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2679/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2679/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2679-:d:1661878
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().