EconPapers    
Economics at your fingertips  
 

Multi-Level Simulation Framework for Degradation-Aware Operation of a Large-Scale Battery Energy Storage Systems

Leon Tadayon and Georg Frey ()
Additional contact information
Leon Tadayon: Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany
Georg Frey: Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany

Energies, 2025, vol. 18, issue 11, 1-18

Abstract: The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple markets while incorporating degradation-aware dispatch strategies. The framework integrates a day-ahead (DA) dispatch level, an intraday (ID) dispatch level, and a high-resolution simulation level to accurately model the impact of operational strategies on state of charge and battery degradation. A case study of BESS operation in the German electricity market is conducted, where frequency containment reserve provision is combined with DA and ID trading. The simulated revenue is validated by a battery revenue index. The study also compares full equivalent cycle (FEC)-based and state-of-health-based degradation models and discusses their application to cost estimation in dispatch optimization. The results emphasize the advantage of using FEC-based degradation costs for dispatch decision-making. Future research will include price forecasting and expanded market participation strategies to further improve and stabilize the profitability of BESS in multi-market environments.

Keywords: battery energy storage system; multi-level simulation framework; cross-market paricipation; degradation-aware operation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2708/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2708/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2708-:d:1662742

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-24
Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2708-:d:1662742