Multi-Level Simulation Framework for Degradation-Aware Operation of a Large-Scale Battery Energy Storage Systems
Leon Tadayon and
Georg Frey ()
Additional contact information
Leon Tadayon: Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany
Georg Frey: Chair of Automation and Energy Systems, Saarland University, 66123 Saarbrücken, Germany
Energies, 2025, vol. 18, issue 11, 1-18
Abstract:
The increasing integration of renewable energy sources necessitates efficient energy storage solutions, with large-scale battery energy storage systems (BESS) playing a key role in grid stabilization and time-shifting of energy. This study presents a multi-level simulation framework for optimizing BESS operation across multiple markets while incorporating degradation-aware dispatch strategies. The framework integrates a day-ahead (DA) dispatch level, an intraday (ID) dispatch level, and a high-resolution simulation level to accurately model the impact of operational strategies on state of charge and battery degradation. A case study of BESS operation in the German electricity market is conducted, where frequency containment reserve provision is combined with DA and ID trading. The simulated revenue is validated by a battery revenue index. The study also compares full equivalent cycle (FEC)-based and state-of-health-based degradation models and discusses their application to cost estimation in dispatch optimization. The results emphasize the advantage of using FEC-based degradation costs for dispatch decision-making. Future research will include price forecasting and expanded market participation strategies to further improve and stabilize the profitability of BESS in multi-market environments.
Keywords: battery energy storage system; multi-level simulation framework; cross-market paricipation; degradation-aware operation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2708/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2708/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2708-:d:1662742
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().