Quantifying Resource and Energy Losses from Waste Fires in Poland: A Barrier to Circular Economy Transition
Katarzyna Grzesik (),
Magdalena Zabochnicka (),
Robert Oleniacz and
Ryszard Kozakiewicz
Additional contact information
Katarzyna Grzesik: Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland
Magdalena Zabochnicka: Department of Sanitary Networks and Installations, Faculty of Infrastructure and Environment, Czestochowa University of Technology, Brzeźnicka 60a, 42-201 Częstochowa, Poland
Robert Oleniacz: Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland
Ryszard Kozakiewicz: Department of Environmental Management and Protection, Faculty of Geo-Data Science, Geodesy and Environmental Engineering, AGH University of Krakow, Mickiewicza 30 Av., 30-059 Krakow, Poland
Energies, 2025, vol. 18, issue 11, 1-22
Abstract:
Waste fires are significant sources of atmospheric pollutants that contribute to environmental degradation and public health risks. They also lead to considerable losses in recyclable materials and energy. In Poland, waste fire incidents have increased in recent years, peaking in 2018–2019. This study quantifies the volume and mass of waste burned and assesses the associated losses in material and energy potential. A detailed incident inventory was compiled, including waste types and burned volumes, which were converted to mass values. This study estimates the potential fate of this waste under proper waste management scenarios. Recyclable materials, such as plastics, metals, paper, textiles, and rubber, are permanently removed from circulation, increasing the reliance on virgin resources. Energy losses were calculated using the lower heating values of each waste type, assuming a full energy recovery potential. In 2018, large and very large fires resulted in an estimated 170,000–1,016,640 m 3 of burned waste, with corresponding energy losses of 495–2970 TJ. In 2019, estimates ranged from 68,000–410,000 m 3 and 139–831 TJ. Plastics, refuse-derived fuel (RDF), and tires accounted for the majority of these losses. These findings highlight the relevance of waste fires in undermining recycling or energy recovery efforts and slowing progress toward a circular economy.
Keywords: waste management; fire incidents; circular economy; resources; energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2731/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2731/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2731-:d:1663629
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().