Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
Cilia Abdelhamid,
Abdeldjalil Latrach,
Minou Rabiei () and
Kalyan Venugopal
Additional contact information
Cilia Abdelhamid: Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
Abdeldjalil Latrach: Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
Minou Rabiei: Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
Kalyan Venugopal: Department of Energy and Petroleum Engineering, University of Wyoming, Laramie, WY 82071, USA
Energies, 2025, vol. 18, issue 11, 1-19
Abstract:
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with a general total of dissolved solids (TDS) ranging from 35,000 to 150,000 ppm, though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified, particularly in high-yield areas like the Powder River Basin, where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g., <2000 ppm TDS, <0.1 ppm Fe/Mn for target PEM systems), necessitating pre-treatment. A review of advanced treatment technologies highlights viable solutions, with estimated desalination and purification costs ranging from USD 0.11 to USD 1.01 per barrel, potentially constituting 2–6% of the levelized cost of hydrogen (LCOH). Furthermore, Wyoming’s substantial renewable-energy potential (3000–4000 GWh/year from wind and solar) could sustainably power electrolysis, theoretically yielding approximately 0.055–0.073 million metric tons (MMT) of green hydrogen annually (assuming 55 kWh/kg H 2 ), a volume constrained more by energy availability than water supply. A preliminary economic analysis underscores that, while water treatment (2–6% LCOH) and transportation (potentially > 10% LCOH) are notable, electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability, further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment, renewable energy, and policy incentives to advance a circular economy model for hydrogen production.
Keywords: produced water; green hydrogen; renewable energies; desalination (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2756/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2756/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2756-:d:1664618
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().