Impact of Coordinated Electric Ferry Charging on Distribution Network Using Metaheuristic Optimization
Rajib Baran Roy,
Sanath Alahakoon () and
Piet Janse Van Rensburg
Additional contact information
Rajib Baran Roy: School of Engineering and Technology, Central Queensland University, Rockhampton 4701, Australia
Sanath Alahakoon: School of Engineering and Technology, Central Queensland University, Rockhampton 4701, Australia
Piet Janse Van Rensburg: School of Engineering and Technology, Central Queensland University, Rockhampton 4701, Australia
Energies, 2025, vol. 18, issue 11, 1-29
Abstract:
The maritime shipping sector is a major contributor to greenhouse gas emissions, particularly in coastal regions. In response, the adoption of electric ferries powered by renewable energy and supported by battery storage technologies has emerged as a viable decarbonization pathway. This study investigates the operational impacts of coordinated electric ferry charging on a medium-voltage distribution network at Gladstone Marina, Queensland, Australia. Using DIgSILENT PowerFactory integrated with MATLAB Simulink and a Python-based control system, four proposed ferry terminals equipped with BESSs (Battery Energy Storage Systems) are simulated. A dynamic model of BESS operation is optimized using a balanced hybrid metaheuristic algorithm combining GA-PSO-BFO (Genetic Algorithm-Particle Swarm Optimization-Bacterial Foraging Optimization). Simulations under 50% and 80% transformer loading conditions assess the effects of charge-only versus charge–discharge strategies. Results indicate that coordinated charge–discharge control improves voltage stability by 1.0–1.5%, reduces transformer loading by 3–4%, and decreases feeder line loading by 2.5–3.5%. Conversely, charge-only coordination offers negligible benefits. Further, quasi-dynamic analyses validate the system’s enhanced stability under coordinated energy management. These findings highlight the potential of docked electric ferries, operating under intelligent control, to act as distributed energy reserves that enhance grid flexibility and operational efficiency.
Keywords: electric ferry; BESS; coordinated mode; control algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2805/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2805/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2805-:d:1666253
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().