EconPapers    
Economics at your fingertips  
 

A Day-Ahead PV Power Forecasting Method Based on Irradiance Correction and Weather Mode Reliability Decision

Haonan Dai, Yumo Zhang and Fei Wang ()
Additional contact information
Haonan Dai: Department of Power Engineering, North China Electric Power University, Baoding 071003, China
Yumo Zhang: Department of Power Engineering, North China Electric Power University, Baoding 071003, China
Fei Wang: Department of Power Engineering, North China Electric Power University, Baoding 071003, China

Energies, 2025, vol. 18, issue 11, 1-19

Abstract: Accurate day-ahead photovoltaics (PV) power forecasting results are significant for power grid operation. According to different weather modes, the existing research has established a classification forecast framework to improve the accuracy of day-ahead forecasts. However, the existing framework still has the following two problems: (1) weather mode prediction and power forecasting are highly dependent on the accuracy of numerical weather prediction (NWP), but the existing classification forecasting framework ignores the impact from NWP errors; (2) the validity of the classification forecasting framework comes from the accurate prediction of weather modes, but the existing framework lacks the analysis and decision-making mechanism of the reliability of weather mode prediction results, which will lead to a significant decline in the overall accuracy when weather modes are wrongly predicted. Therefore, this paper proposes a day-ahead PV power forecasting method based on irradiance correction and weather mode reliability decision. Firstly, based on the measured irradiance, K-means clustering method is used to obtain the daily actual weather mode labels; secondly, considering the coupling relationship of meteorological elements, the graph convolutional network (GCN) model is used to correct the predicted irradiance by using multiple meteorological elements of NWP data; thirdly, the weather mode label is converted into one-heat code, and a weather mode reliability prediction model based on a convolutional neural network (CNN) is constructed, and then the prediction strategy of the day to be forecasted is decided; finally, based on the weather mode reliability prediction results, transformer model are established for unreliable weather and credible weather respectively. The simulation results of the ablation experiments show that classification prediction is an effective strategy to improve the forecasting accuracy of day-ahead PV output, which can be further improved by adding irradiance correction and weather mode reliability prediction modules.

Keywords: day-ahead power forecasting; predicted irradiance correction; correlation of meteorological elements; classification framework; weather mode reliability decision (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/11/2809/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/11/2809/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:11:p:2809-:d:1666473

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-05-29
Handle: RePEc:gam:jeners:v:18:y:2025:i:11:p:2809-:d:1666473