A Study on the Optimal Configuration of Offshore Substation Transformers
Byeonghyeon An,
Jeongsik Oh and
Taesik Park ()
Additional contact information
Byeonghyeon An: Department of Electrical Engineering, Mokpo National University, Muan 58554, Republic of Korea
Jeongsik Oh: Department of Electrical Engineering, Mokpo National University, Muan 58554, Republic of Korea
Taesik Park: Department of Electrical Engineering, Mokpo National University, Muan 58554, Republic of Korea
Energies, 2025, vol. 18, issue 12, 1-23
Abstract:
The growing scale of offshore wind farms and increasing transmission distances has driven the demand for optimized offshore substation (OSS) configurations. This study proposes a comprehensive techno-economic framework to minimize the total lifecycle cost (LCC) of an OSS by determining the optimal number of OSSs and transformers considering wind farm capacity and transmission distance. The methodology incorporates three cost models: capital expenditure (CAPEX), operational expenditure (OPEX), and expected energy not supplied (EENS). CAPEX considers transformer costs, topside structural mass effects, and nonlinear installation costs. OPEX accounts for substation maintenance and vessel operating expenses, and EENS is calculated using transformer failure probability models and redundancy configurations. The optimization is performed through scenario-based simulations and a net present value (NPV)-based comparative analysis to determine the cost-effective configurations. The quantitative analysis demonstrates that for small- to medium-scale wind farms (500–1000 MW), configurations using 1–2 substations and 3–4 transformers achieve minimal LCC regardless of the transmission distance. In contrast, large-scale wind farms (≥1500 MW) require additional substations to mitigate transmission losses and disruption risks, particularly over long distances. These results demonstrate that OSS design should holistically balance initial investment costs, operational reliability, and supply security, providing practical insights for cost-effective planning of next-generation offshore wind projects.
Keywords: offshore substation; expected energy not supplied; economic optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3076/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3076/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3076-:d:1676289
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().