A Real Options Model for CCUS Investment: CO 2 Hydrogenation to Methanol in a Chinese Integrated Refining–Chemical Plant
Ruirui Fang,
Xianxiang Gan (),
Yubing Bai and
Lianyong Feng
Additional contact information
Ruirui Fang: School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
Xianxiang Gan: School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
Yubing Bai: School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
Lianyong Feng: School of Economics and Management, China University of Petroleum (Beijing), Beijing 102249, China
Energies, 2025, vol. 18, issue 12, 1-21
Abstract:
The scaling up of carbon capture, utilization, and storage (CCUS) deployment is constrained by multiple factors, including technological immaturity, high capital expenditures, and extended investment return periods. The existing research on CCUS investment decisions predominantly centers on coal-fired power plants, with the utilization pathways placing a primary emphasis on storage or enhanced oil recovery (EOR). There is limited research available regarding the chemical utilization of carbon dioxide (CO 2 ). This study develops an options-based analytical model, employing geometric Brownian motion to characterize carbon and oil price uncertainties while incorporating the learning curve effect in carbon capture infrastructure costs. Additionally, revenues from chemical utilization and EOR are integrated into the return model. A case study is conducted on a process producing 100,000 tons of methanol annually via CO 2 hydrogenation. Based on numerical simulations, we determine the optimal investment conditions for the “CO 2 -to-methanol + EOR” collaborative scheme. Parameter sensitivity analyses further evaluate how key variables—carbon pricing, oil market dynamics, targeted subsidies, and the cost of renewable electricity—influence investment timing and feasibility. The results reveal that the following: (1) Carbon pricing plays a pivotal role in influencing investment decisions related to CCUS. A stable and sufficiently high carbon price improves the economic feasibility of CCUS projects. When the initial carbon price reaches 125 CNY/t or higher, refining–chemical integrated plants are incentivized to make immediate investments. (2) Increases in oil prices also encourage CCUS investment decisions by refining–chemical integrated plants, but the effect is weaker than that of carbon prices. The model reveals that when oil prices exceed USD 134 per barrel, the investment trigger is activated, leading to earlier project implementation. (3) EOR subsidy and the initial equipment investment subsidy can promote investment and bring forward the expected exercise time of the option. Immediate investment conditions will be triggered when EOR subsidy reaches CNY 75 per barrel or more, or the subsidy coefficient reaches 0.2 or higher. (4) The levelized cost of electricity (LCOE) from photovoltaic sources is identified as a key determinant of hydrogen production economics. A sustained decline in LCOE—from CNY 0.30/kWh to 0.22/kWh, and further to 0.12/kWh or below—significantly advances the optimal investment window. When LCOE reaches CNY 0.12/kWh, the project achieves economic viability, enabling investment potentially as early as 2025. This study provides guidance and reference cases for CCUS investment decisions integrating EOR and chemical utilization in China’s refining–chemical integrated plants.
Keywords: real options; investment decision; methanol; EOR; CCUS (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3092/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3092/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3092-:d:1677135
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().