Advancing Smart Energy: A Review for Algorithms Enhancing Power Grid Reliability and Efficiency Through Advanced Quality of Energy Services
José M. Liceaga-Ortiz- De-La-Peña,
Jorge A. Ruiz-Vanoye (),
Juan M. Xicoténcatl-Pérez,
Ocotlán Díaz-Parra,
Alejandro Fuentes-Penna,
Ricardo A. Barrera-Cámara,
Daniel Robles-Camarillo,
Marco A. Márquez-Vera,
Francisco R. Trejo-Macotela and
Luis A. Ortiz-Suárez
Additional contact information
José M. Liceaga-Ortiz- De-La-Peña: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Jorge A. Ruiz-Vanoye: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Juan M. Xicoténcatl-Pérez: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Ocotlán Díaz-Parra: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Alejandro Fuentes-Penna: El Colegio de Morelos, Av. Morelos Sur 154, Esquina Con Amates, Colonia Las Palmas, Cuernavaca 62050, Mexico
Ricardo A. Barrera-Cámara: Facultad de Ciencias de la Información, Universidad Autónoma del Carmen, Calle 56 No. 4, Esquina con Avenida Concordia, Colonia Benito Juárez, Ciudad del Carmen 24180, Mexico
Daniel Robles-Camarillo: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Marco A. Márquez-Vera: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Francisco R. Trejo-Macotela: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Luis A. Ortiz-Suárez: Dirección de Investigación, Innovación y Posgrado, Universidad Politécnica de Pachuca, Carretera Pachuca—Cd. Sahagún km 20, Ex-Hacienda de Santa Bárbara, Zempoala 43830, Mexico
Energies, 2025, vol. 18, issue 12, 1-33
Abstract:
The transformation of traditional energy systems into smart energy systems has ushered in an era of efficiency, sustainability and technological growth. In this paper, we propose a new definition for “Quality of Energy Service” that focuses on ensuring optimal power-supply quality, encompassing factors such as availability, speed (i.e., the time to restore or adjust supply following interruptions or load changes) and reliability of supply. We explore the integration of advanced algorithms specifically tailored to enhance the Quality of Energy Services. By concentrating on key aspects—reliability, availability and operational efficiency—the study reviews how various algorithmic approaches, from machine learning models to classical optimisation techniques, can significantly improve power grid management. These algorithms are evaluated for their potential to optimise load distribution, predict system failures and manage real-time adjustments in power supply, thereby ensuring higher service quality and grid stability. The findings aim to provide actionable insights for policymakers, engineers and industry stakeholders seeking to advance smart grid technologies and meet global energy standards. Furthermore, we present a case study to demonstrate how these models can be integrated to optimise grid management, forecast energy demand and enhance operational efficiency. We employ multiple machine learning models—including Random Forest, XGBoost version 1.6.1 and Long Short-Term Memory (LSTM) networks—to predict future energy demand. These models are then combined within an ensemble learning framework to improve both the accuracy and robustness of the forecasts. Our ensemble framework not only predicts energy consumption but also optimises battery storage utilisation, ensuring continuous energy availability and reducing reliance on external energy sources. The proposed stacking ensemble achieved a forecasting accuracy of 99.06%, with a Mean Absolute Percentage Error (MAPE) of 0.9364% and a Coefficient of Determination (R 2 ) of 0.998345, highlighting its superior performance compared to each individual base model.
Keywords: smart energy systems; quality of energy service (QoES); power grid management; algorithmic approaches; machine learning; optimisation techniques; load distribution; system failure prediction; real-time adjustments; grid stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3094/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3094/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3094-:d:1677243
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().