A Multi-Scale Time–Frequency Complementary Load Forecasting Method for Integrated Energy Systems
Enci Jiang,
Ziyi Wang and
Shanshan Jiang ()
Additional contact information
Enci Jiang: School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Ziyi Wang: Jiangsu Key Laboratory of Big Data Analysis Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
Shanshan Jiang: School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Energies, 2025, vol. 18, issue 12, 1-19
Abstract:
With the growing demand for global energy transition, integrated energy systems (IESs) have emerged as a key pathway for sustainable development due to their deep coupling of multi-energy flows. Accurate load forecasting is crucial for IES optimization and scheduling, yet conventional methods struggle with complex spatio-temporal correlations and long-term dependencies. This study proposes ST-ScaleFusion, a multi-scale time–frequency complementary hybrid model to enhance comprehensive energy load forecasting accuracy. The model features three core modules: a multi-scale decomposition hybrid module for fine-grained extraction of multi-time-scale features via hierarchical down-sampling and seasonal-trend decoupling; a frequency domain interpolation forecasting (FI) module using complex linear projection for amplitude-phase joint modeling to capture long-term patterns and suppress noise; and an FI sub-module extending series length via frequency domain interpolation to adapt to non-stationary loads. Experiments on 2021–2023 multi-energy load and meteorological data from the Arizona State University Tempe campus show that ST-ScaleFusion achieves 24 h forecasting MAE values of 667.67 kW for electric load, 1073.93 kW/h for cooling load, and 85.73 kW for heating load, outperforming models like TimesNet and TSMixer. Robust in long-step (96 h) forecasting, it reduces MAE by 30% compared to conventional methods, offering an efficient tool for real-time IES scheduling and risk decision-making.
Keywords: integrated energy system; load forecasting; deep learning; time–frequency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3103/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3103/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3103-:d:1677697
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().