An Energy-Function-Based Approach for Power System Inertia Assessment
Shizheng Wang and
Zhenglong Sun ()
Additional contact information
Shizheng Wang: School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
Zhenglong Sun: School of Energy and Power Engineering, Northeast Electric Power University, Jilin 132012, China
Energies, 2025, vol. 18, issue 12, 1-20
Abstract:
With the increasing popularity of low-cost, clean, and environmentally friendly new energy sources, the proportion of grid-connected new energy units has increased significantly. However, since these units are frequency decoupled from the grid through a power electronic interface, they are unable to provide inertia support during active power perturbations, which leads to a decrease in system inertia and reduced frequency stability. In this study, the urgent need to accurately assess inertia is addressed by developing an energy-function-based inertia identification technique that eliminates the effect of damping terms. By integrating vibration mechanics, the proposed method calculates the inertia value after a perturbation using port measurements (active power, voltage phase, and frequency). Simulation results of the Western System Coordinating Council (WSCC) 9-bus system show that the inertia estimation error of the method is less than 1%, which is superior to conventional methods such as rate-of-change-of-frequency (RoCoF) and least squares methods. Notably, the technique accurately evaluates the inertia of synchronous generators and doubly fed induction generators (DFIGs) under virtual inertia control, providing a robust inertia evaluation framework for low-inertia power systems with high renewable energy penetration. This research deepens the understanding of inertial dynamics and contributes to practical applications in grid stability analysis and control strategy optimalization.
Keywords: inertia assessment; energy function; frequency stability (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3105/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3105/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3105-:d:1677687
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().