EconPapers    
Economics at your fingertips  
 

Study of Ignition Process in an Aero Engine Combustor Based on Droplet Evaporation Characteristics Analyses

Lei Sun, Rui Feng, Fangliang Wang and Xiwei Wang ()
Additional contact information
Lei Sun: Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
Rui Feng: Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
Fangliang Wang: Sino-European Institute of Aviation Engineering, Civil Aviation University of China, Tianjin 300300, China
Xiwei Wang: Expace Technology Co., Ltd., Wuhan 430040, China

Energies, 2025, vol. 18, issue 12, 1-24

Abstract: To study the coupling mechanism between droplet evaporation characteristics and flame propagation, in this paper, the ignition process in a single dome lean direct injection combustor is simulated by the Large Eddy Simulation (LES) method. A new concept, i.e., available droplet, and a new parameter, i.e., available equivalence ratio, are innovatively introduced to accurately quantify fuel–air mixing characteristics and reveal flame propagation mechanisms. Simulation results show that the temporal variations in the locally available equivalence ratio during the ignition process can serve as a reliable indicator to identify the flame propagation direction. Moreover, the results show that during the ignition process, available droplets are mainly distributed in the regions where temperatures range from 650 K to 1200 K. The number percentage of available droplets in the combustor increases approximately exponentially to about 2.5% after 40 ms from the ignition. Additionally, the temperature fields and distributions of the available equivalence ratio at different moments during the ignition are also computed and analyzed. The results show that the volume percentage of flammable regions gradually increases from the ignition and eventually stabilizes at about 10% after 8 ms from the ignition. This result shows that during the ignition, the increase in regions whose available equivalence ratios fit flammability is a critical factor for ensuring stable flame development. The available droplet and available equivalence ratio can bridge the gap between droplet-scale evaporation and combustor-scale ignition dynamics, offering an analytical tool for optimizing ignition criteria in aero engine combustors. By analyzing the distributions and evolutions of available fuel rather than fuel vapor, this work can be utilized in design strategies for reliable ignition in extreme conditions.

Keywords: Large Eddy Simulation; ignition process; droplet evaporation; transient flow field (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3130/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3130/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3130-:d:1679005

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-15
Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3130-:d:1679005