EconPapers    
Economics at your fingertips  
 

Thermal Conductivity of Sustainable Earthen Materials Stabilized by Natural and Bio-Based Polymers: An Experimental and Statistical Analysis

Rizwan Shoukat, Marta Cappai, Giorgio Pia, Tadeusz Kubaszek, Roberto Ricciu (), Łukasz Kolek and Luca Pilia
Additional contact information
Rizwan Shoukat: Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
Marta Cappai: Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
Giorgio Pia: Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
Tadeusz Kubaszek: Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
Roberto Ricciu: Dipartimento di Ingegneria Civile, Ambientale e Architettura, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy
Łukasz Kolek: Research and Development Laboratory for Aerospace Materials, Rzeszow University of Technology, Powstancow Warszawy 12, 35-959 Rzeszow, Poland
Luca Pilia: Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università degli Studi di Cagliari, Via Marengo 2, 09123 Cagliari, Italy

Energies, 2025, vol. 18, issue 12, 1-20

Abstract: The natural and sustainable ability of earthen building materials makes them highly valuable. Bio-stabilization involves using biological materials or processes in earthen construction to enhance the performance and characteristics of earthen materials. The main objective of bio-stabilization is to substitute high-energy-intensive building materials with more green, thermally efficient substitutions, ultimately reducing indirect emissions. The large-scale use of earth presents a viable alternative due to its extensive availability and, more importantly, its low embodied energy. The aim of this work is to investigate the thermal conductivity of earth stabilized with Opuntia Ficus-Indica (OFI), a natural biopolymer, and to assess how these properties vary based on mix design. A comparative analysis is performed to evaluate the thermal performance of bio-based polymer-stabilized earthen materials (S-30, S-40, D-30, and D-40) alongside natural biopolymer-stabilized earth (OFI-30 and OFI-40) under dry conditions, employing an experimental method. A scanning electron microscope was employed to examine the microstructure of bio-stabilized earthen materials from the samples. Statistical analysis was conducted on the collected data using ANOVA with a significance level of 0.05. The Tukey test was applied to identify specific mean pairings that demonstrate significant differences in the characteristics of the mixtures at each replacement level, maintaining a confidence interval of 95%. The experimental and statistical findings reveal that the OFI-30, D-40, and S-40 mixtures exhibit strong bonding with earthen materials and high thermal performance compared to all other mix designs in environmental samples. Additionally, these mix designs show further improvement in thermal performance in the dry conditions.

Keywords: biopolymer; bio-based polymers; ANOVA statistical approach; chemical bonding; thermal characteristics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3144/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3144/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-16
Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3144-:d:1679557