EconPapers    
Economics at your fingertips  
 

A Structured Data Model for Asset Health Index Integration in Digital Twins of Energy Converters

Juan F. Gómez Fernández, Eduardo Candón Fernández and Adolfo Crespo Márquez ()
Additional contact information
Juan F. Gómez Fernández: Department of Industrial Management, University of Seville, 41004 Sevilla, Spain
Eduardo Candón Fernández: Department of Industrial Management, University of Seville, 41004 Sevilla, Spain
Adolfo Crespo Márquez: Department of Industrial Management, University of Seville, 41004 Sevilla, Spain

Energies, 2025, vol. 18, issue 12, 1-22

Abstract: A persistent challenge in digital asset management is the lack of standardized models for integrating health assessment—such as the Asset Health Index (AHI)—into Digital Twins, limiting their extended implementation beyond individual projects. Asset managers in the energy sector face challenges of digitalization such as digital environment selection, employed digital modules (absence of an architecture guide) and their interconnection, sources of data, and how to automate the assessment and provide the results in a friendly decision support system. Thus, for energy systems, the integration of Asset Assessment in virtual replicas by Digital Twins is a complete way of asset management by enabling real-time monitoring, predictive maintenance, and lifecycle optimization. Another challenge in this context is how to compound in a structured assessment of asset condition, where the Asset Health Index (AHI) plays a critical role by consolidating heterogeneous data into a single, actionable indicator easy to interpret as a level of risk. This paper tries to serve as a guide against these digital and structured assessments to integrate AHI methodologies into Digital Twins for energy converters. First, the proposed AHI methodology is introduced, and after a structured data model specifically designed, orientated to a basic and economic cloud implementation architecture. This model has been developed fulfilling standardized practices of asset digitalization as the Reference Architecture Model for Industry 4.0 (RAMI 4.0), organizing asset-related information into interoperable domains including physical hierarchy, operational monitoring, reliability assessment, and risk-based decision-making. A Unified Modeling Language (UML) class diagram formalizes the data model for cloud Digital Twin implementation, which is deployed on Microsoft Azure Architecture using native Internet of Things (IoT) and analytics services to enable automated and real-time AHI calculation. This design and development has been realized from a scalable point of view and for future integration of Machine-Learning improvements. The proposed approach is validated through a case study involving three high-capacity converters in distinct operating environments, showing the model’s effective assistance in anticipating failures, optimizing maintenance strategies, and improving asset resilience. In the case study, AHI-based monitoring reduced unplanned failures by 43% and improved maintenance planning accuracy by over 30%.

Keywords: Asset Health Index; digital twin; data model; energy converters; predictive maintenance; Azure Cloud; ISO 14224; RAMI 4.0 (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/12/3148/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/12/3148/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:12:p:3148-:d:1679718

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-17
Handle: RePEc:gam:jeners:v:18:y:2025:i:12:p:3148-:d:1679718