A Dimensionless Number for Evaluating the Influence of Heat Conduction in the Gas Phase on Liquid Evaporation
Longfei Xu and
Xuefeng Xu ()
Additional contact information
Longfei Xu: School of Technology, Beijing Forestry University, Beijing 100083, China
Xuefeng Xu: School of Technology, Beijing Forestry University, Beijing 100083, China
Energies, 2025, vol. 18, issue 13, 1-9
Abstract:
Heat conduction in the gas phase may influence liquid evaporation, yet a quantitative characterization of this effect still remains lacking. Here, through dimensionless analysis of the theoretical model for droplet evaporation, two limiting solutions were obtained for the droplet evaporation considering heat conduction in the gas phase. Based on these solutions, a dimensionless number, HCg , was introduced to evaluate the influence of heat conduction in the gas phase on liquid evaporation. Further analysis indicates that HCg is a function of the relative thermal conductivity of the surrounding air, the evaporative cooling number of the liquid, and the contact angle of the droplet. Analytical expressions for both HCg and the droplet evaporation rate were acquired by fitting the numerical simulations. These results show that the effect of gas-phase heat conduction can generally be neglected due to the typically small values of HCg but becomes significant in cases involving atmospheres with higher thermal conductivity, liquids with smaller evaporative cooling numbers, or droplets with larger contact angles. This work may provide a simple yet accurate criterion for estimating the effects of gas-phase heat conduction on liquid evaporation.
Keywords: liquid evaporation; heat conduction; gas phase; evaporative cooling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/13/3233/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/13/3233/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:13:p:3233-:d:1683727
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().