Heat Transfer Enhancement in Turbine Blade Internal Cooling Channels with Hybrid Pin-Fins and Micro V-Ribs Turbulators
Longbing Hu,
Qiuru Zuo and
Yu Rao ()
Additional contact information
Longbing Hu: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Qiuru Zuo: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Yu Rao: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Energies, 2025, vol. 18, issue 13, 1-16
Abstract:
To improve the convective heat transfer in internal cooling channels of heavy-duty gas turbine blades, this study experimentally and numerically investigates the thermal performance of rectangular channels with hybrid pin-fins and micro V-ribs turbulators. The transient thermochromic liquid crystal (TLC) technique and ANSYS 2019 R3 (ICEM CFD 2019 R3, Fluent 2019 R3, CFD-Post 2019 R3) were employed under Reynolds numbers ranging from 10,000 to 50,000, with the numerical model rigorously validated against experimental data (the maximum RMSE is 2.5%). It is found that hybrid pin-fins and continuous V-ribs configuration exhibits the maximum heat transfer enhancement of 27.6%, with an average friction factor increase of 13.3% and 21.9% improvement in thermal performance factor (TPF) compared to the baseline pin-fin channel. In addition, compared to the baseline pin-fin channel, hybrid pin-fins and broken V-ribs configuration exhibits average heat transfer enhancement (Nu/Nu0) of 24.4%, an average friction factor increase of 7.2% and 22.5% improvement across the investigated Reynolds number range (10,000~50,000) based on computational results. The synergistic effects of hybrid pin-fin and micro V-rib structures demonstrate superior coolant flow control, offering a promising solution for next-generation turbine blade cooling designs. This work provides actionable insights for high-efficiency gas turbine thermal management.
Keywords: heavy-duty gas turbine; blade; pin-fin; V-rib; heat transfer; TPF (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/13/3296/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/13/3296/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:13:p:3296-:d:1685922
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().