EconPapers    
Economics at your fingertips  
 

Impact of Multiple Factors on Temperature Distribution and Output Performance in Dusty Photovoltaic Modules: Implications for Sustainable Solar Energy

Weiping Zhao (), Shuai Hu and Zhiguang Dong
Additional contact information
Weiping Zhao: Department of Energy and Power Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Shuai Hu: Department of Energy and Power Engineering, Shanghai Institute of Technology, Shanghai 201418, China
Zhiguang Dong: Department of Energy and Power Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Energies, 2025, vol. 18, issue 13, 1-17

Abstract: Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting power generation performance and optimizing cleaning schedules in PV power plants. To investigate the combined effects of multiple factors on the temperature distribution and output power of dusty PV modules, a heat transfer model was developed. Validation against experimental data and comparisons with the NOCT model demonstrated the validity and advantages of the proposed model in accurately predicting PV module behavior. This validated model was then employed to simulate and analyze the influence of various parameters on the temperature of dusty modules and to evaluate the module output power, providing insights into sustainable PV energy generation. Results indicate that the attenuation of PV glass transmittance due to dust accumulation constitutes the primary determinant of the lower temperature observed in dusty modules compared to clean modules. This highlights a significant factor impacting long-term performance and resource utilization efficiency. Dusty module temperature exhibits a positive correlation with irradiance and ambient temperature, while displaying a negative correlation with wind speed and dust accumulation. Notably, alignment of wind direction and module orientation enhances module heat dissipation, representing a passive cooling strategy that promotes efficient and sustainable operation. At an ambient temperature of 25 °C and a wind speed of 3 m/s, the dusty module exhibits a temperature reduction of approximately 11.0% compared to the clean module. Furthermore, increasing the irradiance from 200 W/m 2 to 800 W/m 2 results in an increase in output power attenuation from 51.4 W to 192.6 W (approximately 30.4% attenuation rate) for a PV module with a dust accumulation of 25 g/m 2 . This underscores the imperative for effective dust mitigation strategies to ensure long-term viability, economic sustainability, and optimized energy yields from solar energy investments.

Keywords: dusty PV modules; heat transfer model; temperature distribution; output power attenuation; numerical simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/13/3411/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/13/3411/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:13:p:3411-:d:1689919

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-06-29
Handle: RePEc:gam:jeners:v:18:y:2025:i:13:p:3411-:d:1689919