EconPapers    
Economics at your fingertips  
 

Social Life Cycle Assessment of Multifunctional Bioenergy Systems: Social and Socioeconomic Impacts of Hydrothermal Treatment of Wet Biogenic Residues into Intermediate Bioenergy Carriers and Sustainable Solid Biofuels

Marco Ugolini (), Lucia Recchia, Ciro Avolio and Cristina Barragan Yebra
Additional contact information
Marco Ugolini: CA.RE. FOR. Engineering, Via Giovanni Boccaccio 71, 50133 Firenze, Italy
Lucia Recchia: CA.RE. FOR. Engineering, Via Giovanni Boccaccio 71, 50133 Firenze, Italy
Ciro Avolio: KNEIA, Carrer d’Aribau, 168, 1-1, 08036 Barcelona, Spain
Cristina Barragan Yebra: KNEIA, Carrer d’Aribau, 168, 1-1, 08036 Barcelona, Spain

Energies, 2025, vol. 18, issue 14, 1-42

Abstract: This study presents a social life cycle assessment (S-LCA) of the F-CUBED Production System (FPS), an innovative process that converts wet biogenic residues—specifically paper biosludge, virgin olive pomace, and fruit and vegetable residues—into intermediate bioenergy carriers via hydrothermal treatment (TORWASH ® ), pelletization, and anaerobic digestion. The hydrothermal carbonization of these low-grade, moisture-rich biogenic residues enhances the flexibility and reliability of renewable energy systems while also offering the potential to reduce environmental burdens compared to conventional disposal methods. Through this S-LCA, the study aims to evaluate the cradle-to-gate socioeconomic impacts of the FPS in three European contexts—Sweden, Italy, and Spain—using the 2020 UNEP Guidelines and the Social Hotspots Database (SHDB) and applying quantitative modeling via SimaPro. The functional unit is defined as 1 kWh of electricity produced. The assessment combines SHDB-based modeling with primary data from stakeholder surveys conducted in the three countries. Impact categories are harmonized between SHDB and UNEP typologies, and the results are reported in medium-risk-hour equivalents (mrheq). The results show a heterogeneous social impact profile across case studies. In Sweden, the treatment of paper biosludge delivers substantial benefits with minimal risk. In Spain (orange peel), the introduction of the FPS demonstrated a strong social benefit, particularly in health and safety and labor rights, indicating high institutional performance and good integration with local industry. Conversely, in Italy (olive pomace), the FPS revealed significant social risks, especially in the biopellet production and electricity generation sectors, reflecting regional vulnerabilities in labor conditions and governance. This suggests that targeted mitigation strategies are recommended in contexts like Southern Italy. These findings highlight that the social sustainability of emerging bioenergy technologies is context-dependent and sensitive to sectoral and regional socioeconomic conditions. This S-LCA complements prior environmental assessments and emphasizes the importance of integrating social performance considerations in the deployment and scaling of innovative bioenergy systems.

Keywords: intermediate energy carriers; renewable electricity; social life cycle assessment; wet biogenic residues; waste-to-energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/14/3695/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/14/3695/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:14:p:3695-:d:1700539

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-16
Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3695-:d:1700539