EconPapers    
Economics at your fingertips  
 

Novel Artificial Intelligence Applications in Energy: A Systematic Review

Tai Zhang () and Goran Strbac
Additional contact information
Tai Zhang: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK
Goran Strbac: Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

Energies, 2025, vol. 18, issue 14, 1-51

Abstract: This systematic review examines state-of-the-art artificial intelligence applications in energy systems, assessing their performance, real-world deployments and transformative potential. Guided by PRISMA 2020, we searched Web of Science, IEEE Xplore, ScienceDirect, SpringerLink, and Google Scholar for English-language studies published between January 2015 and January 2025 that reported novel AI uses in energy, empirical results, or significant theoretical advances and passed peer review. After title–abstract screening and full-text assessment, it was determined that 129 of 3000 records met the inclusion criteria. The methodological quality, reproducibility and real-world validation were appraised, and the findings were synthesised narratively around four critical themes: reinforcement learning (35 studies), multi-agent systems (28), planning under uncertainty (25), and AI for resilience (22), with a further 19 studies covering other areas. Notable outcomes include DeepMind-based reinforcement learning cutting data centre cooling energy by 40%, multi-agent control boosting virtual power plant revenue by 28%, AI-enhanced planning slashing the computation time by 87% without sacrificing solution quality, battery management AI raising efficiency by 30%, and machine learning accelerating hydrogen catalyst discovery 200,000-fold. Across domains, AI consistently outperformed traditional techniques. The review is limited by its English-only scope, potential under-representation of proprietary industrial work, and the inevitable lag between rapid AI advances and peer-reviewed publication. Overall, the evidence positions AI as a pivotal enabler of cleaner, more reliable, and efficient energy systems, though progress will depend on data quality, computational resources, legacy system integration, equity considerations, and interdisciplinary collaboration. No formal review protocol was registered because this study is a comprehensive state-of-the-art assessment rather than a clinical intervention analysis.

Keywords: artificial intelligence; reinforcement learning; AI agents; power systems; energy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/14/3747/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/14/3747/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:14:p:3747-:d:1702113

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-18
Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3747-:d:1702113