Power Losses in the Multi-Turn Windings of High-Speed PMSM Electric Machine Armatures
Oleksandr Makarchuk and
Dariusz Całus ()
Additional contact information
Oleksandr Makarchuk: Faculty of Electrical Engineering, Czestochowa University of Technology, J. Dąbrowskiego Str. 69, 42-201 Częstochowa, Poland
Dariusz Całus: Faculty of Electrical Engineering, Czestochowa University of Technology, J. Dąbrowskiego Str. 69, 42-201 Częstochowa, Poland
Energies, 2025, vol. 18, issue 14, 1-23
Abstract:
This paper investigates the dependencies between the design parameters of the armature (stator) winding of a high-speed PMSM machine and the electrical losses in its windings resulting from eddy currents. In addition, the factors accounting for the occurrence of parasitic circulating currents, whose presence in the phase windings is associated with the design specificity, are analyzed. Quantitative analysis is carried out by the application of a newly developed mathematical model for the calculation of fundamental and additional losses in a multi-turn coil enclosed in the slots of a ferromagnetic core. The analysis takes into account the actual design of the slot and the conductor, the variable arrangement of individual conductors in the slot, the core saturation and the presence of the excitation field—to represent the main factors that affect the process of additional losses in the slot of the electric machine. The verification of the mathematical model developed in this study was carried out by comparing the distribution of power losses in the slot section of the coil, consisting of several elementary conductors connected in parallel and located in a rectangular open slot, with an identical distribution derived on the basis of an analytical method from the classical circuit theory. For the purpose of confirming the results and conclusions derived from simulation studies, a number of physical experiments were carried out, consisting in determining the power losses in multi-turn coils of different designs. Recommendations have been developed to minimize additional losses by optimizing the arrangement of conductors within the slot, selecting the appropriate cross-sectional size of a single conductor and the saturation level of the tooth zone.
Keywords: eddy current losses; additional electrical power losses; skin effect; proximity effect; circulating currents; conductor transposition; FEM analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/14/3761/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/14/3761/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:14:p:3761-:d:1702629
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().