EconPapers    
Economics at your fingertips  
 

Towards Integrated Design Tools for Water–Energy Nexus Solutions: Simulation of Advanced AWG Systems at Building Scale

Lucia Cattani, Roberto Figoni, Paolo Cattani and Anna Magrini ()
Additional contact information
Lucia Cattani: SEAS SA, Société de l’Eau Aérienne Suisse, Technical Office, via dell’Industria 13/A, 6826 Riva San Vitale, Switzerland
Roberto Figoni: Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
Paolo Cattani: Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy
Anna Magrini: Department of Civil Engineering and Architecture, University of Pavia, 27100 Pavia, Italy

Energies, 2025, vol. 18, issue 14, 1-33

Abstract: This study investigated the integration of advanced Atmospheric Water Generators (AWGs) within the design process of building energy systems, focusing on the water–energy nexus in the context of a real-life hospital building. It is based on a simulation approach, recognised as a viable means to analyse and enhance AWG potentialities. However, the current state of research does not address the issue of AWG integration within building plant systems. This study contributes to fill such a research gap by building upon an authors’ previous work and proposing an enhanced methodology. The methodology describes how to incorporate a multipurpose AWG system into the energy simulation environment of DesignBuilder (DB), version 7.0.0116, through its coupling with AWGSim, version 1.20d, a simulation tool specifically developed for atmospheric water generators. The chosen case study is a wing of the Mondino Hospital in Pavia, Italy, selected for its complex geometry and HVAC requirements. By integrating AWG outputs—covering water production, heating, and cooling—into DB, this study compared two configurations: the existing HVAC system and an enhanced version that includes the AWG as plant support. The simulation results demonstrated a 16.3% reduction in primary energy consumption (from 231.3 MWh to 193.6 MWh), with the elimination of methane consumption and additional benefits in water production (257 m 3 ). This water can be employed for photovoltaic panel cleaning, further reducing the primary energy consumption to 101.9 MWh (55.9% less than the existing plant), and for human consumption or other technical needs. Moreover, this study highlights the potential of using AWG technology to supply purified water, which can be a pivotal solution for hospitals located in areas affected by water crises. This research contributes to the atmospheric water field by addressing the important issue of simulating AWG systems within building energy design tools, enabling informed decisions regarding water–energy integration at the project stage and supporting a more resilient and sustainable approach to building infrastructure.

Keywords: atmospheric water harvesting; water–energy nexus; building energy simulation; sustainable atmospheric water; integrated atmospheric water generators (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/14/3874/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/14/3874/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:14:p:3874-:d:1706154

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-22
Handle: RePEc:gam:jeners:v:18:y:2025:i:14:p:3874-:d:1706154