Optimal Distribution Planning of Solar Plants and Storage in a Power Grid with High Penetration of Renewables
Pere Colet (),
Benjamín A. Carreras,
José Miguel Reynolds-Barredo and
Damià Gomila
Additional contact information
Pere Colet: Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
Benjamín A. Carreras: Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
José Miguel Reynolds-Barredo: Departamento de Física, Universidad Carlos III de Madrid, E-28911 Leganés, Spain
Damià Gomila: Instituto de Física Interdisciplinar y Sistemas Complejos, IFISC (CSIC-UIB), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain
Energies, 2025, vol. 18, issue 15, 1-17
Abstract:
Integrating variable renewable energy sources such as solar power into existing power grids presents major planning and reliability challenges. This study introduces an approach to optimize the placement of solar plants and allocation of storage in grids with high share of these variable energy sources by using a simulation framework that captures system-wide emergent behaviors. Unlike traditional engineering models focused on detailed component-level dynamics, a modified ORNL-PSERC-Alaska model based on self-organized criticality is used to reproduce the statistical features of blackouts, including cascading failures and long-range correlations. A distinctive feature of this approach is the explicit inclusion of key ingredients that shape these statistics, such as the transmission grid structure, generation and consumer buses, power flow balance, periodic dispatches, system failures, secular demand growth, demand fluctuations, and variability of renewable energy sources. When applied to the Balearic Islands grid, this method identifies generation and storage layouts that minimize storage requirements while maintaining reliability levels comparable to conventional power systems. The results offer a complementary systems-level perspective for planning resilient and efficient renewable energy integration.
Keywords: energy transition; solar generation planning; storage optimization; blackout risk; grid resilience (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/15/3891/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/15/3891/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:15:p:3891-:d:1706826
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().