Pool Boiling Heat Transfer of Ethanol on Surfaces with Minichannels
Robert Pastuszko ()
Additional contact information
Robert Pastuszko: Faculty of Mechatronics and Mechanical Engineering, Kielce University of Technology, Al. Tysiąclecia P.P. 7, 25-314 Kielce, Poland
Energies, 2025, vol. 18, issue 15, 1-25
Abstract:
In this paper, the pool boiling of ethanol was analyzed. The experiments were carried out at atmospheric pressure. Heat transfer surfaces in the form of deep minichannels were made of copper. The channels with a depth of 0.2 to 0.5 mm were milled in parallel. The width of the minichannels was 0.6–1.2 mm, and the depth was 5.5, 6, and 10 mm. The highest heat transfer coefficient, 52 kW/m 2 K, was achieved for the minichannels with a depth of 6 mm and a width of 0.8 mm. The maximum heat flux of 953 kW/m 2 was produced using minichannels 5.5 mm deep and 0.5 mm wide. An over threefold increase in the heat transfer coefficient and over a twofold increase in the maximum heat flux in relation to the plain surface were obtained. In the heat flux range 21.2–1035 kW/m 2 , the influence of channel width and depth on the heat exchange process was determined. The diameters of the detaching vapor bubbles were determined on the experimental setup using a high-speed camera. An analytical model was developed to determine the diameter of the departing bubble for the analyzed enhanced surfaces. The model correctly represented the changes in bubble diameter with increasing heat flux.
Keywords: pool boiling; minchannel; heat transfer coefficient; bubble departure diameter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/15/3938/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/15/3938/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:15:p:3938-:d:1708481
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().