EconPapers    
Economics at your fingertips  
 

Enhancing Medium-Term Load Forecasting Accuracy in Post-Pandemic Tropical Regions: A Comparative Analysis of Polynomial Regression, Split Polynomial Regression, and LSTM Networks

Agus Setiawan ()
Additional contact information
Agus Setiawan: PT PLN (Persero), Jakarta 12160, Indonesia

Energies, 2025, vol. 18, issue 15, 1-14

Abstract: This research focuses on medium-term load forecasting in a tropical region post-pandemic. This study presents one of the first attempts to analyze medium-term forecasting using half-hourly resolution in the Java-Bali power system post-COVID-19 period. The dataset comprises load measurements recorded every 30 min (48 data points per day) from 2014 to 2022. Three distinct methods, namely polynomial regression, split polynomial regression, and Long Short-Term Memory (LSTM) networks, were employed and compared to predict the electricity load demand. The analysis found that LSTM outperformed the other methods, exhibiting the lowest error rates with Mean Absolute Percentage Error (MAPE) at 3.86% and Root Mean Squared Error (RMSE) at 1247.93. Additionally, a consistent observation emerged, showing that all methods performed better in predicting load demand during nighttime hours (6 p.m. to 6 a.m.). The hypothesis is that data stability during nighttime, with fewer significant fluctuations, contributed to the improved prediction accuracy. These findings provide valuable insights for improving load forecasting in the post-pandemic tropical region and offer opportunities for enhancing power grid efficiency and reliability.

Keywords: medium-term load forecasting; polynomial regression; split polynomial regression; LSTM; post-pandemic load forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/18/15/3999/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/15/3999/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:15:p:3999-:d:1711136

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-07-28
Handle: RePEc:gam:jeners:v:18:y:2025:i:15:p:3999-:d:1711136