Cost-Effective Energy Retrofit Pathways for Buildings: A Case Study in Greece
Charikleia Karakosta () and
Isaak Vryzidis
Additional contact information
Charikleia Karakosta: Decision Support Systems Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9, Iroon Polytechniou Str., 15780 Athens, Greece
Isaak Vryzidis: Department of Civil Engineering, University of West Attica, Petrou Ralli & Thivon 250, 12244 Athens, Greece
Energies, 2025, vol. 18, issue 15, 1-21
Abstract:
Urban areas are responsible for most of Europe’s energy demand and emissions and urgently require building retrofits to meet climate neutrality goals. This study evaluates the energy efficiency potential of three public school buildings in western Macedonia, Greece—a cold-climate region with high heating needs. The buildings, constructed between 1986 and 2003, exhibited poor insulation, outdated electromechanical systems, and inefficient lighting, resulting in high oil consumption and low energy ratings. A robust methodology is applied, combining detailed on-site energy audits, thermophysical diagnostics based on U-value calculations, and a techno-economic assessment utilizing Net Present Value (NPV), Internal Rate of Return (IRR), and SWOT analysis. The study evaluates a series of retrofit measures, including ceiling insulation, high-efficiency lighting replacements, and boiler modernization, against both technical performance criteria and financial viability. Results indicate that ceiling insulation and lighting system upgrades yield positive economic returns, while wall and floor insulation measures remain financially unattractive without external subsidies. The findings are further validated through sensitivity analysis and policy scenario modeling, revealing how targeted investments, especially when supported by public funding schemes, can maximize energy savings and emissions reductions. The study concludes that selective implementation of cost-effective measures, supported by public grants, can achieve energy targets, improve indoor environments, and serve as a replicable model of targeted retrofits across the region, though reliance on external funding and high upfront costs pose challenges.
Keywords: sustainable development; energy transition; green transition; energy policy; sustainable investments; sustainable financing; financial feasibility; energy efficiency; public buildings (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/15/4014/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/15/4014/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:15:p:4014-:d:1711862
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().