Machine Learning Forecasting of Commercial Buildings’ Energy Consumption Using Euclidian Distance Matrices
Connor Scott () and
Alhussein Albarbar
Additional contact information
Connor Scott: Department of Engineering, Manchester Met University, Manchester M1 5GD, UK
Alhussein Albarbar: Department of Engineering, Manchester Met University, Manchester M1 5GD, UK
Energies, 2025, vol. 18, issue 15, 1-18
Abstract:
Governments worldwide have set ambitious targets for decarbonising energy grids, driving the need for increased renewable energy generation and improved energy efficiency. One key strategy for achieving this involves enhanced energy management in buildings, often using machine learning-based forecasting methods. However, such methods typically rely on extensive historical data collected via costly sensor installations—resources that many buildings lack. This study introduces a novel forecasting approach that eliminates the need for large-scale historical datasets or expensive sensors. By integrating custom-built models with existing energy data, the method applies calculated weighting through a distance matrix and accuracy coefficients to generate reliable forecasts. It uses readily available building attributes—such as floor area and functional type to position a new building within the matrix of existing data. A Euclidian distance matrix, akin to a K-nearest neighbour algorithm, determines the appropriate neural network(s) to utilise. These findings are benchmarked against a consolidated, more sophisticated neural network and a long short-term memory neural network. The dataset has hourly granularity over a 24 h horizon. The model consists of five bespoke neural networks, demonstrating the superiority of other models with a 610 s training duration, uses 500 kB of storage, achieves an R 2 of 0.9, and attains an average forecasting accuracy of 85.12% in predicting the energy consumption of the five buildings studied. This approach not only contributes to the specific goal of a fully decarbonized energy grid by 2050 but also establishes a robust and efficient methodology for maintaining standards with existing benchmarks while providing more control over the method.
Keywords: machine learning; buildings; energy; forecasting (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/15/4160/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/15/4160/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:15:p:4160-:d:1718260
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().