A Systematic Review of Biopolymer Phase Change Materials for Thermal Energy Storage: Challenges, Opportunities, and Future Direction
Nadia Parwaty Wijanarko,
Sindu Daniarta () and
Piotr Kolasiński ()
Additional contact information
Nadia Parwaty Wijanarko: Department of Mechanical Engineering, Universitas Hasyim Asy’ari, Jl. Irian Jaya No. 55, Cukir, Kec. Diwek, Kabupaten Jombang 61471, Indonesia
Sindu Daniarta: Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Piotr Kolasiński: Department of Thermodynamics and Renewable Sources, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
Energies, 2025, vol. 18, issue 16, 1-45
Abstract:
This article systematically reviews biopolymer phase change materials (PCMs) for TES applications. The review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines using databases from Scopus, Web of Science, and Google Scholar. The biopolymer PCMs are categorized as natural, synthetic, and hybrid (a combination of natural and synthetic). A total of 82 articles were included in the analysis. Several thermal properties, mechanical properties, advancements, and challenges are discussed. This article aims to review biopolymer PCMs and identify research gaps for future development. Natural biopolymer PCMs include lipid, lignin, polysaccharides, proteins, etc. Synthetic biopolymer PCMs include supramolecular, polyethylene glycol, polyurethane, polyrotaxane, polylactic acid, etc. Hybrid biopolymer PCMs combine natural and synthetic polymers with conductive fillers, balancing high latent heat with improved thermal stability and durability, although issues, like leakage and low conductivity, persist. It is found that biopolymers can be used as the core and supporting matrix of PCMs. Several cases and configurations of core, supporting matrix, and fillers in the development of PCM from biopolymers are discussed. This article also demonstrates that several natural, synthetic, and hybrid biopolymer PCMs hold promise for demanding TES applications due to their tunable properties and reliability. Biopolymer PCMs offer a sustainable alternative to petroleum-derived substances by minimizing environmental harm, cutting carbon emissions, and promoting a circular economy. This review also highlights several challenges, such as feedstock selection, purification and encapsulation, system compatibility, and standardization, that future research might address to enable scalable, safe, and cost-effective biopolymer PCM solutions.
Keywords: biomaterial; biodegradable; natural polymer; synthetic polymer; phase equilibria (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/18/16/4262/pdf (application/pdf)
https://www.mdpi.com/1996-1073/18/16/4262/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:18:y:2025:i:16:p:4262-:d:1721854
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().